|
@@ -1,9 +1,7 @@
|
|
|
package com.tzld.piaoquan.recommend.server.service.score;
|
|
|
|
|
|
|
|
|
-
|
|
|
import com.tzld.piaoquan.recommend.server.common.base.*;
|
|
|
-import com.tzld.piaoquan.recommend.server.gen.recommend.CtrSamples;
|
|
|
import com.tzld.piaoquan.recommend.server.gen.recommend.LRSamples;
|
|
|
import com.tzld.piaoquan.recommend.server.service.rank.RankParam;
|
|
|
import com.tzld.piaoquan.recommend.server.service.score.feature.FeatureUsage;
|
|
@@ -19,11 +17,11 @@ import java.util.List;
|
|
|
import java.util.concurrent.*;
|
|
|
|
|
|
|
|
|
-public class VlogShareLRScorer extends BaseLRModelScorer{
|
|
|
+public class VlogShareLRScorer extends BaseLRModelScorer {
|
|
|
|
|
|
private final static int CORE_POOL_SIZE = 64;
|
|
|
|
|
|
- private static final int LOCAL_TIME_OUT= 150;
|
|
|
+ private static final int LOCAL_TIME_OUT = 150;
|
|
|
private final static Logger LOGGER = LoggerFactory.getLogger(VlogShareLRScorer.class);
|
|
|
private static final ExecutorService executorService = Executors.newFixedThreadPool(128);
|
|
|
private static final FeatureUsage featureUsage = new FeatureUsage();
|
|
@@ -39,8 +37,8 @@ public class VlogShareLRScorer extends BaseLRModelScorer{
|
|
|
|
|
|
@Override
|
|
|
public List<RankItem> scoring(final RankParam param,
|
|
|
- final UserFeature userFeature,
|
|
|
- final List<RankItem> rankItems) {
|
|
|
+ final UserFeature userFeature,
|
|
|
+ final List<RankItem> rankItems) {
|
|
|
long startTime = System.currentTimeMillis();
|
|
|
LRModel model = (LRModel) this.getModel();
|
|
|
LOGGER.debug("model size: [{}]", model.getModelSize());
|
|
@@ -58,8 +56,8 @@ public class VlogShareLRScorer extends BaseLRModelScorer{
|
|
|
}
|
|
|
|
|
|
private List<RankItem> rankByJava(final List<RankItem> items,
|
|
|
- final RankParam param,
|
|
|
- final UserFeature user) {
|
|
|
+ final RankParam param,
|
|
|
+ final UserFeature user) {
|
|
|
long startTime = System.currentTimeMillis();
|
|
|
LRModel model = (LRModel) this.getModel();
|
|
|
LOGGER.debug("model size: [{}]", model.getModelSize());
|
|
@@ -110,8 +108,9 @@ public class VlogShareLRScorer extends BaseLRModelScorer{
|
|
|
lrSamples = bytesFeatureExtractor.single(userInfoBytes, newsInfoBytes,
|
|
|
new RequestContextBytesFeature(requestContext));
|
|
|
} catch (Exception e) {
|
|
|
- LOGGER.error("extract feature error for imei={}, doc={}, [{}]", new Object[]{new String(userInfoBytes.getUid()), item.getVideoid(),
|
|
|
- ExceptionUtils.getFullStackTrace(e)});
|
|
|
+ LOGGER.error("extract feature error for imei={}, doc={}, [{}]",
|
|
|
+ new Object[]{new String(userInfoBytes.getUid()), item.getVideoId(),
|
|
|
+ ExceptionUtils.getFullStackTrace(e)});
|
|
|
}
|
|
|
|
|
|
|
|
@@ -125,13 +124,13 @@ public class VlogShareLRScorer extends BaseLRModelScorer{
|
|
|
}
|
|
|
|
|
|
|
|
|
- CtrSamples.Builder samples = CtrSamples.newBuilder();
|
|
|
- samples.setLr_samples(lrSamples);
|
|
|
- item.setSamples(samples);
|
|
|
+// CtrSamples.Builder samples = CtrSamples.newBuilder();
|
|
|
+// samples.setLr_samples(lrSamples);
|
|
|
+// item.setSamples(samples);
|
|
|
}
|
|
|
|
|
|
item.setScore(pro);
|
|
|
- item.setRecScore(pro);
|
|
|
+ // item.setRecScore(pro);
|
|
|
return pro;
|
|
|
}
|
|
|
|