Ver código fonte

Merge branch 'feature/base_rov_nor_calibration' of algorithm/recommend-server into master

jiachanghui 2 meses atrás
pai
commit
5dba1ea63e

+ 46 - 1
recommend-server-service/src/main/java/com/tzld/piaoquan/recommend/server/service/rank/strategy/RankStrategy4RegionMergeModelV564.java

@@ -334,6 +334,15 @@ public class RankStrategy4RegionMergeModelV564 extends RankStrategy4RegionMergeM
             item.norFeatureMap = FeatureBucketUtils.bucketFeature("20241209_nor_bucket.txt", featureMapDouble);
         }
         // 4 排序模型计算
+        double fmRovBias = mergeWeight.getOrDefault("fmRovBias", -0.0017);
+        double fmRovWeight = mergeWeight.getOrDefault("fmRovWeight", 1.331);
+        double fmRovSquareWeight = mergeWeight.getOrDefault("fmRovSquareWeight", -6.4597);
+        double fmRovCubeWeight = mergeWeight.getOrDefault("fmRovCubeWeight", 14.393);
+        double xgbNorScaleType = mergeWeight.getOrDefault("xgbNorScaleType", 0.0);
+        double xgbNorBias = mergeWeight.getOrDefault("xgbNorBias", -1.6945);
+        double xgbNorWeight = mergeWeight.getOrDefault("xgbNorWeight", 1.8968);
+        double xgbNorPowerWeight = mergeWeight.getOrDefault("xgbNorPowerWeight", 1.2216);
+        double xgbNorPowerExp = mergeWeight.getOrDefault("xgbNorPowerExp", 1.3217);
         Map<String, String> sceneFeatureMap = new HashMap<>(0);
         List<RankItem> items = ScorerUtils.getScorerPipeline("feeds_score_config_fm_xgb_20241209.conf").scoring(sceneFeatureMap, userFeatureMap, norUserFeatureMap, rankItems);
         // 5 排序公式特征
@@ -345,12 +354,14 @@ public class RankStrategy4RegionMergeModelV564 extends RankStrategy4RegionMergeM
             item.getScoresMap().put("fmRovOrigin", fmRovOrigin);
             double fmRov = restoreScore(fmRovOrigin);
             item.getScoresMap().put("fmRov", fmRov);
+            double newFmRov = rovCalibration(fmRovBias, fmRovWeight, fmRovSquareWeight, fmRovCubeWeight, fmRov);
             double hasReturnRovScore = Double.parseDouble(vid2MapFeature.getOrDefault(item.getVideoId() + "", new HashMap<>()).getOrDefault("rov", "0"));
             item.getScoresMap().put("hasReturnRovScore", hasReturnRovScore);
             double norXGBScore = item.getScoresMap().getOrDefault("NorXGBScore", 0d);
+            double newNorXGBScore = norCalibration(xgbNorScaleType, xgbNorBias, xgbNorWeight, xgbNorPowerWeight, xgbNorPowerExp, norXGBScore);
             double vor = Double.parseDouble(vid2MapFeature.getOrDefault(item.getVideoId() + "", new HashMap<>()).getOrDefault("vor", "0"));
             item.getScoresMap().put("vor", vor);
-            score = fmRov * (0.1 + Math.pow(norXGBScore, 1.1)) * (0.1 + vor);
+            score = newFmRov * (0.1 + newNorXGBScore) * (0.1 + vor);
             Video video = item.getVideo();
             video.setScore(score);
             video.setSortScore(score);
@@ -484,4 +495,38 @@ public class RankStrategy4RegionMergeModelV564 extends RankStrategy4RegionMergeM
             }
         }
     }
+
+    private double rovCalibration(double bias, double weight, double squareWeight, double cubeWeight, double score) {
+        double newScore = bias + weight * score;
+        if (Math.abs(squareWeight) > 1E-8) {
+            newScore += squareWeight * Math.pow(score, 2);
+        }
+        if (Math.abs(cubeWeight) > 1E-8) {
+            newScore += cubeWeight * Math.pow(score, 3);
+        }
+        if (newScore < 1E-8) {
+            newScore = score;
+        }
+        return newScore;
+    }
+
+    private double norCalibration(double scaleType, double polyBias, double polyWeight, double powerWeight, double powerExp, double score) {
+        if (scaleType < 1) {
+            return norPolyCalibration(polyBias, polyWeight, score);
+        } else {
+            return norPowerCalibration(powerWeight, powerExp, score);
+        }
+    }
+
+    private double norPolyCalibration(double bias, double weight, double score) {
+        double newScore = bias + weight * score;
+        if (newScore < 1E-8) {
+            newScore = 0;
+        }
+        return newScore;
+    }
+
+    private double norPowerCalibration(double weight, double exp, double score) {
+        return weight * Math.pow(score, exp);
+    }
 }

+ 17 - 2
recommend-server-service/src/main/java/com/tzld/piaoquan/recommend/server/service/rank/strategy/RankStrategy4RegionMergeModelV567.java

@@ -334,8 +334,11 @@ public class RankStrategy4RegionMergeModelV567 extends RankStrategy4RegionMergeM
             item.norFeatureMap = FeatureBucketUtils.bucketFeature("20241209_nor_bucket.txt", featureMapDouble);
         }
         // 4 排序模型计算
+        double xgbNorScaleType = mergeWeight.getOrDefault("xgbNorScaleType", 0.0);
         double xgbNorBias = mergeWeight.getOrDefault("xgbNorBias", -1.6945);
         double xgbNorWeight = mergeWeight.getOrDefault("xgbNorWeight", 1.8968);
+        double xgbNorPowerWeight = mergeWeight.getOrDefault("xgbNorPowerWeight", 1.2216);
+        double xgbNorPowerExp = mergeWeight.getOrDefault("xgbNorPowerExp", 1.3217);
         Map<String, String> sceneFeatureMap = new HashMap<>(0);
         List<RankItem> items = ScorerUtils.getScorerPipeline("feeds_score_config_fm_xgb_20241209.conf").scoring(sceneFeatureMap, userFeatureMap, norUserFeatureMap, rankItems);
         // 5 排序公式特征
@@ -350,7 +353,7 @@ public class RankStrategy4RegionMergeModelV567 extends RankStrategy4RegionMergeM
             double hasReturnRovScore = Double.parseDouble(vid2MapFeature.getOrDefault(item.getVideoId() + "", new HashMap<>()).getOrDefault("rov", "0"));
             item.getScoresMap().put("hasReturnRovScore", hasReturnRovScore);
             double norXGBScore = item.getScoresMap().getOrDefault("NorXGBScore", 0d);
-            double newNorXGBScore = norCalibration(xgbNorBias, xgbNorWeight, norXGBScore);
+            double newNorXGBScore = norCalibration(xgbNorScaleType, xgbNorBias, xgbNorWeight, xgbNorPowerWeight, xgbNorPowerExp, norXGBScore);
             double vor = Double.parseDouble(vid2MapFeature.getOrDefault(item.getVideoId() + "", new HashMap<>()).getOrDefault("vor", "0"));
             item.getScoresMap().put("vor", vor);
             score = fmRov * (0.1 + newNorXGBScore) * (0.1 + vor);
@@ -488,11 +491,23 @@ public class RankStrategy4RegionMergeModelV567 extends RankStrategy4RegionMergeM
         }
     }
 
-    private double norCalibration(double bias, double weight, double score) {
+    private double norCalibration(double scaleType, double polyBias, double polyWeight, double powerWeight, double powerExp, double score) {
+        if (scaleType < 1) {
+            return norPolyCalibration(polyBias, polyWeight, score);
+        } else {
+            return norPowerCalibration(powerWeight, powerExp, score);
+        }
+    }
+
+    private double norPolyCalibration(double bias, double weight, double score) {
         double newScore = bias + weight * score;
         if (newScore < 1E-8) {
             newScore = 0;
         }
         return newScore;
     }
+
+    private double norPowerCalibration(double weight, double exp, double score) {
+        return weight * Math.pow(score, exp);
+    }
 }