| 
					
				 | 
			
			
				@@ -0,0 +1,653 @@ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+package com.tzld.piaoquan.recommend.server.service.rank.strategy; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import com.ctrip.framework.apollo.spring.annotation.ApolloJsonValue; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import com.google.common.reflect.TypeToken; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import com.tzld.piaoquan.recommend.server.common.base.RankItem; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import com.tzld.piaoquan.recommend.server.model.Video; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import com.tzld.piaoquan.recommend.server.service.rank.RankParam; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import com.tzld.piaoquan.recommend.server.service.rank.RankResult; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import com.tzld.piaoquan.recommend.server.service.rank.RankService; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import com.tzld.piaoquan.recommend.server.service.rank.extractor.ExtractorUtils; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import com.tzld.piaoquan.recommend.server.service.rank.extractor.RankExtractorItemFeature; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import com.tzld.piaoquan.recommend.server.service.rank.extractor.RankExtractorItemTags; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import com.tzld.piaoquan.recommend.server.service.rank.extractor.RankExtractorUserFeature; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import com.tzld.piaoquan.recommend.server.service.rank.processor.RankProcessorBoost; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import com.tzld.piaoquan.recommend.server.service.rank.processor.RankProcessorDensity; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import com.tzld.piaoquan.recommend.server.service.rank.processor.RankProcessorInsert; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import com.tzld.piaoquan.recommend.server.service.rank.processor.RankProcessorTagFilter; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import com.tzld.piaoquan.recommend.server.service.recall.strategy.*; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import com.tzld.piaoquan.recommend.server.service.score.ScorerUtils; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import com.tzld.piaoquan.recommend.server.util.CommonCollectionUtils; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import com.tzld.piaoquan.recommend.server.util.JSONUtils; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import lombok.extern.slf4j.Slf4j; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import org.apache.commons.collections4.CollectionUtils; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import org.apache.commons.lang3.RandomUtils; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import org.springframework.data.redis.connection.RedisConnectionFactory; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import org.springframework.data.redis.connection.RedisStandaloneConfiguration; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import org.springframework.data.redis.connection.jedis.JedisConnectionFactory; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import org.springframework.data.redis.core.RedisTemplate; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import org.springframework.data.redis.serializer.StringRedisSerializer; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import org.springframework.stereotype.Service; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import java.text.SimpleDateFormat; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import java.util.*; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import java.util.stream.Collectors; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+/** 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ * @author zhangbo 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ * @desc 地域召回融合 流量池汤姆森 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ */ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+@Service 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+@Slf4j 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+public class RankStrategy4RegionMergeModelV566 extends RankService { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    @ApolloJsonValue("${rank.score.merge.weightv566:}") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    private Map<String, Double> mergeWeight; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    @ApolloJsonValue("${RankStrategy4DensityFilterV2:}") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    private Map<String, Map<String, Map<String, String>>> filterRules = new HashMap<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    final private String CLASS_NAME = this.getClass().getSimpleName(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    public void duplicate(Set<Long> setVideo, List<Video> videos) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        Iterator<Video> iterator = videos.iterator(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        while (iterator.hasNext()) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            Video v = iterator.next(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (setVideo.contains(v.getVideoId())) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                iterator.remove(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } else { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                setVideo.add(v.getVideoId()); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    @Override 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    public List<Video> mergeAndRankRovRecall(RankParam param) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        Map<String, Double> mergeWeight = this.mergeWeight != null ? this.mergeWeight : new HashMap<>(0); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        //-------------------融------------------- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        //-------------------合------------------- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        //-------------------逻------------------- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        //-------------------辑------------------- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<Video> oldRovs = new ArrayList<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        oldRovs.addAll(extractAndSort(param, RegionHRecallStrategy.PUSH_FORM)); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        oldRovs.addAll(extractAndSort(param, RegionHDupRecallStrategy.PUSH_FORM)); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        oldRovs.addAll(extractAndSort(param, Region24HRecallStrategy.PUSH_FORM)); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        oldRovs.addAll(extractAndSort(param, RegionRelative24HRecallStrategy.PUSH_FORM)); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        oldRovs.addAll(extractAndSort(param, RegionRelative24HDupRecallStrategy.PUSH_FORM)); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        int sizeReturn = param.getSize(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        removeDuplicate(oldRovs); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        oldRovs = oldRovs.size() <= sizeReturn 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                ? oldRovs 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                : oldRovs.subList(0, sizeReturn); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        Set<Long> setVideo = new HashSet<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        this.duplicate(setVideo, oldRovs); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        //-------------------地域相关召回 融合+去重------------------- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<Video> rovRecallRank = new ArrayList<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<Video> v1 = extractAndSort(param, RegionRealtimeRecallStrategyV1.PUSH_FORM); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<Video> v2 = extractAndSort(param, RegionRealtimeRecallStrategyV2.PUSH_FORM); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<Video> v3 = extractAndSort(param, RegionRealtimeRecallStrategyV3.PUSH_FORM); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<Video> v4 = extractAndSort(param, RegionRealtimeRecallStrategyV4.PUSH_FORM); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        this.duplicate(setVideo, v1); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        this.duplicate(setVideo, v2); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        this.duplicate(setVideo, v3); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        this.duplicate(setVideo, v4); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        //-------------------相关性召回 融合+去重------------------- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<Video> v5 = extractAndSort(param, SimHotVideoRecallStrategy.PUSH_FORM); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<Video> v6 = extractAndSort(param, ReturnVideoRecallStrategy.PUSH_FORM); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        this.duplicate(setVideo, v5); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        this.duplicate(setVideo, v6); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        //-------------------节日扶持召回 融合+去重------------------- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<Video> v7 = extractAndSort(param, FestivalRecallStrategyV1.PUSH_FORM); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        this.duplicate(setVideo, v7); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        rovRecallRank.addAll(oldRovs); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        rovRecallRank.addAll(v1.subList(0, Math.min(mergeWeight.getOrDefault("v1", 20.0).intValue(), v1.size()))); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        rovRecallRank.addAll(v2.subList(0, Math.min(mergeWeight.getOrDefault("v2", 15.0).intValue(), v2.size()))); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        rovRecallRank.addAll(v3.subList(0, Math.min(mergeWeight.getOrDefault("v3", 10.0).intValue(), v3.size()))); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        rovRecallRank.addAll(v4.subList(0, Math.min(mergeWeight.getOrDefault("v4", 0.0).intValue(), v4.size()))); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        rovRecallRank.addAll(v5.subList(0, Math.min(mergeWeight.getOrDefault("v5", 10.0).intValue(), v5.size()))); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        rovRecallRank.addAll(v6.subList(0, Math.min(mergeWeight.getOrDefault("v6", 10.0).intValue(), v6.size()))); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        rovRecallRank.addAll(v7.subList(0, Math.min(mergeWeight.getOrDefault("v7", 10.0).intValue(), v7.size()))); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        //-------------------排------------------- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        //-------------------序------------------- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        //-------------------逻------------------- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        //-------------------辑------------------- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        // 1 模型分 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<String> rtFeaPart = new ArrayList<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<RankItem> items = model(rovRecallRank, param, rtFeaPart); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<String> rtFeaPartKey = new ArrayList<>(Arrays.asList("item_rt_fea_1day_partition", "item_rt_fea_1h_partition")); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<String> rtFeaPartKeyResult = this.redisTemplate.opsForValue().multiGet(rtFeaPartKey); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        Calendar calendar = Calendar.getInstance(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        String date = new SimpleDateFormat("yyyyMMdd").format(calendar.getTime()); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        String hour = new SimpleDateFormat("HH").format(calendar.getTime()); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        String rtFeaPart1h = date + hour; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if (rtFeaPartKeyResult != null) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (rtFeaPartKeyResult.get(1) != null) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                rtFeaPart1h = rtFeaPartKeyResult.get(1); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        // 2 统计分 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        String cur = rtFeaPart1h; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<String> datehours = new LinkedList<>(); // 时间是倒叙的 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        for (int i = 0; i < 24; ++i) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            datehours.add(cur); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            cur = ExtractorUtils.subtractHours(cur, 1); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        for (RankItem item : items) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            Map<String, String> itemBasicMap = item.getItemBasicFeature(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            Map<String, Map<String, Double>> itemRealMap = item.getItemRealTimeFeature(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            List<Double> views = getStaticData(itemRealMap, datehours, "view_pv_list_1h"); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            List<Double> plays = getStaticData(itemRealMap, datehours, "play_pv_list_1h"); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            List<Double> shares = getStaticData(itemRealMap, datehours, "share_pv_list_1h"); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            List<Double> preturns = getStaticData(itemRealMap, datehours, "p_return_uv_list_1h"); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            List<Double> allreturns = getStaticData(itemRealMap, datehours, "return_uv_list_1h"); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            List<Double> share2return = getRateData(preturns, shares, 1.0, 1000.0); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            Double share2returnScore = calScoreWeightNoTimeDecay(share2return); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            List<Double> view2return = getRateData(preturns, views, 1.0, 1000.0); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            Double view2returnScore = calScoreWeightNoTimeDecay(view2return); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            List<Double> view2play = getRateData(plays, views, 1.0, 1000.0); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            Double view2playScore = calScoreWeightNoTimeDecay(view2play); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            List<Double> play2share = getRateData(shares, plays, 1.0, 1000.0); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            Double play2shareScore = calScoreWeightNoTimeDecay(play2share); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            item.scoresMap.put("share2returnScore", share2returnScore); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            item.scoresMap.put("view2returnScore", view2returnScore); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            item.scoresMap.put("view2playScore", view2playScore); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            item.scoresMap.put("play2shareScore", play2shareScore); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            // 全部回流的rov和ros 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            List<Double> share2allreturn = getRateData(allreturns, shares, 1.0, 10.0); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            Double share2allreturnScore = calScoreWeightNoTimeDecay(share2allreturn); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            List<Double> view2allreturn = getRateData(allreturns, views, 0.0, 0.0); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            Double view2allreturnScore = calScoreWeightNoTimeDecay(view2allreturn); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            item.scoresMap.put("share2allreturnScore", share2allreturnScore); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            item.scoresMap.put("view2allreturnScore", view2allreturnScore); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            // 全部回流 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            Double allreturnsScore = calScoreWeightNoTimeDecay(allreturns); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            item.scoresMap.put("allreturnsScore", allreturnsScore); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            // 平台回流 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            Double preturnsScore = calScoreWeightNoTimeDecay(preturns); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            item.scoresMap.put("preturnsScore", preturnsScore); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            // rov的趋势 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            double trendScore = calTrendScore(view2return); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            item.scoresMap.put("trendScore", trendScore); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            // 新视频提取 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            double newVideoScore = calNewVideoScore(itemBasicMap); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            item.scoresMap.put("newVideoScore", newVideoScore); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        // 3 融合公式 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<Video> result = new ArrayList<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        double a = mergeWeight.getOrDefault("a", 0.1); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        double b = mergeWeight.getOrDefault("b", 0.0); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        double c = mergeWeight.getOrDefault("c", 0.000001); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        double d = mergeWeight.getOrDefault("d", 1.0); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        double e = mergeWeight.getOrDefault("e", 1.0); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        double f = mergeWeight.getOrDefault("f", 0.6); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        double g = mergeWeight.getOrDefault("g", 2.0); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        double h = mergeWeight.getOrDefault("h", 240.0); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        double ifAdd = mergeWeight.getOrDefault("ifAdd", 1.0); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        for (RankItem item : items) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            double trendScore = item.scoresMap.getOrDefault("trendScore", 0.0) > 1E-8 ? 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    item.scoresMap.getOrDefault("trendScore", 0.0) : 0.0; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            double newVideoScore = item.scoresMap.getOrDefault("newVideoScore", 0.0) > 1E-8 ? 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    item.scoresMap.getOrDefault("newVideoScore", 0.0) : 0.0; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            double strScore = item.getScoreStr(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            double rosScore = item.scoresMap.getOrDefault("share2returnScore", 0.0); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            double share2allreturnScore = item.scoresMap.getOrDefault("share2allreturnScore", 0.0); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            double view2allreturnScore = item.scoresMap.getOrDefault("view2allreturnScore", 0.0); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            double preturnsScore = Math.log(1 + item.scoresMap.getOrDefault("preturnsScore", 0.0)); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            double score = 0.0; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (ifAdd < 0.5) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                score = Math.pow(strScore, a) * Math.pow(rosScore, b) + c * preturnsScore + 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        (newVideoScore > 1E-8 ? d * trendScore * (e + newVideoScore) : 0.0); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } else { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                score = a * strScore + b * rosScore + c * preturnsScore + 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        (newVideoScore > 1E-8 ? d * trendScore * (e + newVideoScore) : 0.0); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            double allreturnsScore = item.scoresMap.getOrDefault("allreturnsScore", 0.0); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (allreturnsScore > h) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                score += (f * share2allreturnScore + g * view2allreturnScore); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            Video video = item.getVideo(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            video.setScore(score); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            video.setSortScore(score); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            video.setScoreStr(item.getScoreStr()); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            video.setScoresMap(item.getScoresMap()); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            result.add(video); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        Collections.sort(result, Comparator.comparingDouble(o -> -o.getSortScore())); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return result; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    public double calNewVideoScore(Map<String, String> itemBasicMap) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        double existenceDays = Double.valueOf(itemBasicMap.getOrDefault("existence_days", "30")); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if (existenceDays > 5) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            return 0.0; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        double score = 1.0 / (existenceDays + 10.0); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return score; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    public double calTrendScore(List<Double> data) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        double sum = 0.0; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        int size = data.size(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        for (int i = 0; i < size - 4; ++i) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            sum += data.get(i) - data.get(i + 4); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if (sum * 10 > 0.6) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            sum = 0.6; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } else { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            sum = sum * 10; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if (sum > 0) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            // 为了打断点 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            sum = sum; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return sum; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    public Double calScoreWeightNoTimeDecay(List<Double> data) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        Double up = 0.0; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        Double down = 0.0; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        for (int i = 0; i < data.size(); ++i) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            up += 1.0 * data.get(i); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            down += 1.0; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return down > 1E-8 ? up / down : 0.0; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    public List<Double> getRateData(List<Double> ups, List<Double> downs, Double up, Double down) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<Double> data = new LinkedList<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        for (int i = 0; i < ups.size(); ++i) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (ExtractorUtils.isDoubleEqualToZero(downs.get(i) + down)) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                data.add(0.0); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } else { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                data.add( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        (ups.get(i) + up) / (downs.get(i) + down) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                ); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return data; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    public List<Double> getStaticData(Map<String, Map<String, Double>> itemRealMap, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                      List<String> datehours, String key) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<Double> views = new LinkedList<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        Map<String, Double> tmp = itemRealMap.getOrDefault(key, new HashMap<>()); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        for (String dh : datehours) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            views.add(tmp.getOrDefault(dh, 0.0D) + 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    (views.isEmpty() ? 0.0 : views.get(views.size() - 1)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            ); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return views; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    public List<RankItem> model(List<Video> videos, RankParam param, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                List<String> rtFeaPart) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<RankItem> result = new ArrayList<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if (videos.isEmpty()) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            return result; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        RedisStandaloneConfiguration redisSC = new RedisStandaloneConfiguration(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        redisSC.setPort(6379); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        redisSC.setPassword("Wqsd@2019"); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        redisSC.setHostName("r-bp1pi8wyv6lzvgjy5z.redis.rds.aliyuncs.com"); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        RedisConnectionFactory connectionFactory = new JedisConnectionFactory(redisSC); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        RedisTemplate<String, String> redisTemplate = new RedisTemplate<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        redisTemplate.setConnectionFactory(connectionFactory); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        redisTemplate.setDefaultSerializer(new StringRedisSerializer()); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        redisTemplate.afterPropertiesSet(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        // 0: 场景特征处理 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        Map<String, String> sceneFeatureMap = this.getSceneFeature(param); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        // 1: user特征处理 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        Map<String, String> userFeatureMap = new HashMap<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if (param.getMid() != null && !param.getMid().isEmpty()) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            String midKey = "user_info_4video_" + param.getMid(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            String userFeatureStr = redisTemplate.opsForValue().get(midKey); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (userFeatureStr != null) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                try { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    userFeatureMap = JSONUtils.fromJson(userFeatureStr, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                            new TypeToken<Map<String, String>>() { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                            }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                            userFeatureMap); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                } catch (Exception e) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    log.error(String.format("parse user json is wrong in {} with {}", this.CLASS_NAME, e)); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        final Set<String> userFeatureSet = new HashSet<>(Arrays.asList( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                "machineinfo_brand", "machineinfo_model", "machineinfo_platform", "machineinfo_system", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                "u_1day_exp_cnt", "u_1day_click_cnt", "u_1day_share_cnt", "u_1day_return_cnt", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                "u_3day_exp_cnt", "u_3day_click_cnt", "u_3day_share_cnt", "u_3day_return_cnt" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        )); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        Iterator<Map.Entry<String, String>> iterator = userFeatureMap.entrySet().iterator(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        while (iterator.hasNext()) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            Map.Entry<String, String> entry = iterator.next(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (!userFeatureSet.contains(entry.getKey())) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                iterator.remove(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        Map<String, String> f1 = RankExtractorUserFeature.getOriginFeature(userFeatureMap, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                new HashSet<String>(Arrays.asList( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        "machineinfo_brand", "machineinfo_model", "machineinfo_platform", "machineinfo_system" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                )) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        ); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        Map<String, String> f2 = RankExtractorUserFeature.getUserRateFeature(userFeatureMap); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        Map<String, String> f3 = RankExtractorUserFeature.cntFeatureChange(userFeatureMap, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                new HashSet<String>(Arrays.asList( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        "u_1day_exp_cnt", "u_1day_click_cnt", "u_1day_share_cnt", "u_1day_return_cnt", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        "u_3day_exp_cnt", "u_3day_click_cnt", "u_3day_share_cnt", "u_3day_return_cnt" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                )) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        ); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        f1.putAll(f2); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        f1.putAll(f3); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        // 2-1: item特征处理 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        final Set<String> itemFeatureSet = new HashSet<>(Arrays.asList( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                "total_time", "play_count_total", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                "i_1day_exp_cnt", "i_1day_click_cnt", "i_1day_share_cnt", "i_1day_return_cnt", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                "i_3day_exp_cnt", "i_3day_click_cnt", "i_3day_share_cnt", "i_3day_return_cnt" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        )); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<RankItem> rankItems = CommonCollectionUtils.toList(videos, RankItem::new); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<Long> videoIds = CommonCollectionUtils.toListDistinct(videos, Video::getVideoId); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<String> videoFeatureKeys = videoIds.stream().map(r -> "video_info_" + r) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                .collect(Collectors.toList()); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<String> videoFeatures = redisTemplate.opsForValue().multiGet(videoFeatureKeys); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if (videoFeatures != null) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            for (int i = 0; i < videoFeatures.size(); ++i) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                String vF = videoFeatures.get(i); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                Map<String, String> vfMap = new HashMap<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                if (vF == null) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    continue; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                try { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    vfMap = JSONUtils.fromJson(vF, new TypeToken<Map<String, String>>() { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    }, vfMap); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    Map<String, String> vfMapCopy = new HashMap<>(vfMap); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    rankItems.get(i).setItemBasicFeature(vfMapCopy); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    Iterator<Map.Entry<String, String>> iteratorIn = vfMap.entrySet().iterator(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    while (iteratorIn.hasNext()) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        Map.Entry<String, String> entry = iteratorIn.next(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        if (!itemFeatureSet.contains(entry.getKey())) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                            iteratorIn.remove(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    Map<String, String> f4 = RankExtractorItemFeature.getItemRateFeature(vfMap); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    Map<String, String> f5 = RankExtractorItemFeature.cntFeatureChange(vfMap, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                            new HashSet<String>(Arrays.asList( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                    "total_time", "play_count_total", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                    "i_1day_exp_cnt", "i_1day_click_cnt", "i_1day_share_cnt", "i_1day_return_cnt", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                    "i_3day_exp_cnt", "i_3day_click_cnt", "i_3day_share_cnt", "i_3day_return_cnt")) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    ); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    f4.putAll(f5); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    rankItems.get(i).setFeatureMap(f4); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                } catch (Exception e) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    log.error(String.format("parse video json is wrong in {} with {}", this.CLASS_NAME, e)); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        // 2-2: item 实时特征处理 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<String> rtFeaPartKey = new ArrayList<>(Arrays.asList("item_rt_fea_1day_partition", "item_rt_fea_1h_partition")); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<String> rtFeaPartKeyResult = this.redisTemplate.opsForValue().multiGet(rtFeaPartKey); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        Calendar calendar = Calendar.getInstance(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        String date = new SimpleDateFormat("yyyyMMdd").format(calendar.getTime()); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        String hour = new SimpleDateFormat("HH").format(calendar.getTime()); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        String rtFeaPart1day = date + hour; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        String rtFeaPart1h = date + hour; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if (rtFeaPartKeyResult != null) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (rtFeaPartKeyResult.get(0) != null) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                rtFeaPart1day = rtFeaPartKeyResult.get(0); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (rtFeaPartKeyResult.get(1) != null) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                rtFeaPart1h = rtFeaPartKeyResult.get(1); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<String> videoRtKeys1 = videoIds.stream().map(r -> "item_rt_fea_1day_" + r) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                .collect(Collectors.toList()); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<String> videoRtKeys2 = videoIds.stream().map(r -> "item_rt_fea_1h_" + r) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                .collect(Collectors.toList()); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        videoRtKeys1.addAll(videoRtKeys2); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<String> videoRtFeatures = this.redisTemplate.opsForValue().multiGet(videoRtKeys1); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if (videoRtFeatures != null) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            int j = 0; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            for (RankItem item : rankItems) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                String vF = videoRtFeatures.get(j); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                ++j; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                if (vF == null) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    continue; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                Map<String, String> vfMap = new HashMap<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                Map<String, Map<String, Double>> vfMapNew = new HashMap<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                try { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    vfMap = JSONUtils.fromJson(vF, new TypeToken<Map<String, String>>() { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    }, vfMap); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    for (Map.Entry<String, String> entry : vfMap.entrySet()) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        String value = entry.getValue(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        if (value == null) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                            continue; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        String[] var1 = value.split(","); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        Map<String, Double> tmp = new HashMap<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        for (String var2 : var1) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                            String[] var3 = var2.split(":"); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                            tmp.put(var3[0], Double.valueOf(var3[1])); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        vfMapNew.put(entry.getKey(), tmp); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                } catch (Exception e) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    log.error(String.format("parse video item_rt_fea_1day_ json is wrong in {} with {}", this.CLASS_NAME, e)); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                Map<String, String> f8 = RankExtractorItemFeature.getItemRealtimeRate(vfMapNew, rtFeaPart1day); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                item.getFeatureMap().putAll(f8); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            for (RankItem item : rankItems) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                String vF = videoRtFeatures.get(j); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                ++j; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                if (vF == null) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    continue; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                Map<String, String> vfMap = new HashMap<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                Map<String, Map<String, Double>> vfMapNew = new HashMap<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                try { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    vfMap = JSONUtils.fromJson(vF, new TypeToken<Map<String, String>>() { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    }, vfMap); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    for (Map.Entry<String, String> entry : vfMap.entrySet()) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        String value = entry.getValue(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        if (value == null) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                            continue; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        String[] var1 = value.split(","); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        Map<String, Double> tmp = new HashMap<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        for (String var2 : var1) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                            String[] var3 = var2.split(":"); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                            tmp.put(var3[0], Double.valueOf(var3[1])); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        vfMapNew.put(entry.getKey(), tmp); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    item.setItemRealTimeFeature(vfMapNew); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                } catch (Exception e) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    log.error(String.format("parse video item_rt_fea_1h_ json is wrong in {} with {}", this.CLASS_NAME, e)); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                Map<String, String> f8 = RankExtractorItemFeature.getItemRealtimeRate(vfMapNew, rtFeaPart1h); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                item.getFeatureMap().putAll(f8); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<RankItem> rovRecallScore = ScorerUtils.getScorerPipeline(ScorerUtils.BASE_CONF) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                .scoring(sceneFeatureMap, userFeatureMap, rankItems); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return rovRecallScore; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    private Map<String, String> getSceneFeature(RankParam param) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        Map<String, String> sceneFeatureMap = new HashMap<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        String provinceCn = param.getProvince(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        provinceCn = provinceCn.replaceAll("省$", ""); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        sceneFeatureMap.put("ctx_region", provinceCn); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        String city = param.getCity(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if ("台北市".equals(city) | 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                "高雄市".equals(city) | 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                "台中市".equals(city) | 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                "桃园市".equals(city) | 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                "新北市".equals(city) | 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                "台南市".equals(city) | 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                "基隆市".equals(city) | 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                "吉林市".equals(city) | 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                "新竹市".equals(city) | 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                "嘉义市".equals(city) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        ) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } else { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            city = city.replaceAll("市$", ""); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        sceneFeatureMap.put("ctx_city", city); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        Calendar calendar = Calendar.getInstance(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        sceneFeatureMap.put("ctx_week", (calendar.get(Calendar.DAY_OF_WEEK) + 6) % 7 + ""); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        sceneFeatureMap.put("ctx_hour", new SimpleDateFormat("HH").format(calendar.getTime())); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return sceneFeatureMap; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    @Override 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    public RankResult mergeAndSort(RankParam param, List<Video> rovVideos, List<Video> flowVideos) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        //1 兜底策略,rov池子不足时,用冷启池填补。直接返回。 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if (CollectionUtils.isEmpty(rovVideos)) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (param.getSize() < flowVideos.size()) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                return new RankResult(flowVideos.subList(0, param.getSize())); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } else { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                return new RankResult(flowVideos); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        //2 根据实验号解析阿波罗参数。 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        String abCode = param.getAbCode(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        Map<String, Map<String, String>> rulesMap = this.filterRules.getOrDefault(abCode, new HashMap<>(0)); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        //3 标签读取 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if (rulesMap != null && !rulesMap.isEmpty()) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            RankExtractorItemTags extractorItemTags = new RankExtractorItemTags(this.redisTemplate); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            extractorItemTags.processor(rovVideos, flowVideos); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        //6 合并结果时间卡控 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if (rulesMap != null && !rulesMap.isEmpty()) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            RankProcessorTagFilter.processor(rovVideos, flowVideos, rulesMap); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        //4 rov池提权功能 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        RankProcessorBoost.boostByTag(rovVideos, rulesMap); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        //5 rov池强插功能 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        RankProcessorInsert.insertByTag(param, rovVideos, rulesMap); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        //7 流量池按比例强插 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<Video> result = new ArrayList<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        for (int i = 0; i < param.getTopK() && i < rovVideos.size(); i++) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            result.add(rovVideos.get(i)); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        double flowPoolP = getFlowPoolP(param); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        int flowPoolIndex = 0; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        int rovPoolIndex = param.getTopK(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        for (int i = 0; i < param.getSize() - param.getTopK(); i++) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            double rand = RandomUtils.nextDouble(0, 1); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (rand < flowPoolP) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                if (flowPoolIndex < flowVideos.size()) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    result.add(flowVideos.get(flowPoolIndex++)); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                } else { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    break; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } else { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                if (rovPoolIndex < rovVideos.size()) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    result.add(rovVideos.get(rovPoolIndex++)); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                } else { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    break; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if (rovPoolIndex >= rovVideos.size()) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            for (int i = flowPoolIndex; i < flowVideos.size() && result.size() < param.getSize(); i++) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                result.add(flowVideos.get(i)); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if (flowPoolIndex >= flowVideos.size()) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            for (int i = rovPoolIndex; i < rovVideos.size() && result.size() < param.getSize(); i++) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                result.add(rovVideos.get(i)); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        //8 合并结果密度控制 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        Map<String, Integer> densityRules = new HashMap<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if (rulesMap != null && !rulesMap.isEmpty()) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            for (Map.Entry<String, Map<String, String>> entry : rulesMap.entrySet()) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                String key = entry.getKey(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                Map<String, String> value = entry.getValue(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                if (value.containsKey("density")) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    densityRules.put(key, Integer.valueOf(value.get("density"))); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        Set<Long> videosSet = result.stream().map(Video::getVideoId).collect(Collectors.toSet()); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<Video> rovRecallRankNew = rovVideos.stream().filter(r -> !videosSet.contains(r.getVideoId())).collect(Collectors.toList()); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<Video> flowPoolRankNew = flowVideos.stream().filter(r -> !videosSet.contains(r.getVideoId())).collect(Collectors.toList()); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<Video> resultWithDensity = RankProcessorDensity.mergeDensityControl(result, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                rovRecallRankNew, flowPoolRankNew, densityRules); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return new RankResult(resultWithDensity); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    public static void main(String[] args) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+//        String up1 = "2024031012:513,2024031013:456,2024031014:449,2024031015:262,2024031016:414,2024031017:431,2024031018:643,2024031019:732,2024031020:927,2024031021:859,2024031022:866,2024031023:358,2024031100:133,2024031101:28,2024031102:22,2024031103:15,2024031104:21,2024031105:36,2024031106:157,2024031107:371,2024031108:378,2024031109:216,2024031110:269,2024031111:299,2024031112:196,2024031113:186,2024031114:85,2024031115:82"; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        String up1 = "2024031012:1167,2024031013:1023,2024031014:947,2024031015:664,2024031016:842,2024031017:898,2024031018:1170,2024031019:1439,2024031020:2010,2024031021:1796,2024031022:1779,2024031023:722,2024031100:226,2024031101:50,2024031102:31,2024031103:30,2024031104:38,2024031105:63,2024031106:293,2024031107:839,2024031108:1250,2024031109:858,2024031110:767,2024031111:697,2024031112:506,2024031113:534,2024031114:381,2024031115:278"; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        String down1 = "2024031012:2019,2024031013:1676,2024031014:1626,2024031015:1458,2024031016:1508,2024031017:1510,2024031018:1713,2024031019:1972,2024031020:2500,2024031021:2348,2024031022:2061,2024031023:1253,2024031100:659,2024031101:243,2024031102:191,2024031103:282,2024031104:246,2024031105:439,2024031106:1079,2024031107:1911,2024031108:2023,2024031109:1432,2024031110:1632,2024031111:1183,2024031112:1024,2024031113:938,2024031114:701,2024031115:541"; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+//        String up2 = "2024031012:215,2024031013:242,2024031014:166,2024031015:194,2024031016:209,2024031017:245,2024031018:320,2024031019:332,2024031020:400,2024031021:375,2024031022:636,2024031023:316,2024031100:167,2024031101:45,2024031102:22,2024031103:26,2024031104:12,2024031105:22,2024031106:24,2024031107:143,2024031108:181,2024031109:199,2024031110:194,2024031111:330,2024031112:423,2024031113:421,2024031114:497,2024031115:424"; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        String up2 = "2024031012:409,2024031013:464,2024031014:354,2024031015:474,2024031016:436,2024031017:636,2024031018:709,2024031019:741,2024031020:802,2024031021:904,2024031022:1112,2024031023:639,2024031100:378,2024031101:78,2024031102:47,2024031103:37,2024031104:17,2024031105:49,2024031106:103,2024031107:293,2024031108:457,2024031109:488,2024031110:558,2024031111:711,2024031112:785,2024031113:830,2024031114:974,2024031115:850"; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        String down2 = "2024031012:748,2024031013:886,2024031014:788,2024031015:1029,2024031016:957,2024031017:1170,2024031018:1208,2024031019:1181,2024031020:1275,2024031021:1265,2024031022:1512,2024031023:1190,2024031100:1127,2024031101:486,2024031102:289,2024031103:254,2024031104:197,2024031105:310,2024031106:344,2024031107:693,2024031108:976,2024031109:1045,2024031110:1039,2024031111:1257,2024031112:1202,2024031113:1454,2024031114:1785,2024031115:1544"; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        RankStrategy4RegionMergeModelV566 job = new RankStrategy4RegionMergeModelV566(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<Double> l1 = job.getRateData(job.help(up1, "2024031115", 24), job.help(down1, "2024031115", 24), 1., 10.); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        Double d1 = job.calScoreWeightNoTimeDecay(l1); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        System.out.println(d1); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<Double> l2 = job.getRateData(job.help(up2, "2024031115", 24), job.help(down2, "2024031115", 24), 1., 10.); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        Double d2 = job.calScoreWeightNoTimeDecay(l2); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        System.out.println(d2); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    List<Double> help(String s, String date, Integer h) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        Map<String, Double> maps = Arrays.stream(s.split(",")).map(pair -> pair.split(":")) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                .collect(Collectors.toMap( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        arr -> arr[0], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        arr -> Double.valueOf(arr[1]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                )); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<String> datehours = new LinkedList<>(); // 时间是倒叙的 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        List<Double> result = new ArrayList<>(); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        for (int i = 0; i < h; ++i) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            Double d = (result.isEmpty() ? 0.0 : result.get(result.size() - 1)); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            result.add(d + maps.getOrDefault(date, 0D)); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            datehours.add(date); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            date = ExtractorUtils.subtractHours(date, 1); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return result; 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+} 
			 |