|
@@ -0,0 +1,704 @@
|
|
|
+package com.tzld.piaoquan.recommend.server.implement;
|
|
|
+
|
|
|
+
|
|
|
+import com.alibaba.fastjson.JSONObject;
|
|
|
+import com.google.common.base.Stopwatch;
|
|
|
+import com.google.common.reflect.TypeToken;
|
|
|
+import com.tzld.piaoquan.recommend.server.common.base.RankItem;
|
|
|
+import com.tzld.piaoquan.recommend.server.framework.candidiate.Candidate;
|
|
|
+import com.tzld.piaoquan.recommend.server.framework.common.User;
|
|
|
+import com.tzld.piaoquan.recommend.server.framework.merger.MergeUtils;
|
|
|
+import com.tzld.piaoquan.recommend.server.framework.merger.StrategyQueue;
|
|
|
+import com.tzld.piaoquan.recommend.server.framework.recaller.BaseRecaller;
|
|
|
+import com.tzld.piaoquan.recommend.server.framework.recaller.provider.RedisBackedQueue;
|
|
|
+import com.tzld.piaoquan.recommend.server.framework.score.ScorerUtils;
|
|
|
+import com.tzld.piaoquan.recommend.server.framework.utils.RedisSmartClient;
|
|
|
+import com.tzld.piaoquan.recommend.server.gen.recommend.RecommendRequest;
|
|
|
+import com.tzld.piaoquan.recommend.server.model.Video;
|
|
|
+import com.tzld.piaoquan.recommend.server.service.rank.extractor.ExtractorUtils;
|
|
|
+import com.tzld.piaoquan.recommend.server.service.rank.extractor.RankExtractorItemFeature;
|
|
|
+import com.tzld.piaoquan.recommend.server.service.rank.extractor.RankExtractorUserFeature;
|
|
|
+import com.tzld.piaoquan.recommend.server.util.CommonCollectionUtils;
|
|
|
+import com.tzld.piaoquan.recommend.server.util.JSONUtils;
|
|
|
+import org.apache.commons.collections4.CollectionUtils;
|
|
|
+import org.slf4j.Logger;
|
|
|
+import org.slf4j.LoggerFactory;
|
|
|
+import org.springframework.data.redis.connection.RedisConnectionFactory;
|
|
|
+import org.springframework.data.redis.connection.RedisStandaloneConfiguration;
|
|
|
+import org.springframework.data.redis.connection.jedis.JedisConnectionFactory;
|
|
|
+import org.springframework.data.redis.core.RedisTemplate;
|
|
|
+import org.springframework.data.redis.serializer.StringRedisSerializer;
|
|
|
+import org.springframework.stereotype.Service;
|
|
|
+
|
|
|
+import javax.annotation.PostConstruct;
|
|
|
+import javax.annotation.Resource;
|
|
|
+import java.text.SimpleDateFormat;
|
|
|
+import java.util.*;
|
|
|
+import java.util.stream.Collectors;
|
|
|
+
|
|
|
+@Service
|
|
|
+public class TopRecommendPipeline {
|
|
|
+
|
|
|
+ private static final Logger log = LoggerFactory.getLogger(TopRecommendPipeline.class);
|
|
|
+
|
|
|
+ public static final String MERGE_CONF = "merge_config.conf";
|
|
|
+
|
|
|
+ @Resource
|
|
|
+ private RedisSmartClient client;
|
|
|
+ @Resource
|
|
|
+ public RedisTemplate<String, String> redisTemplate;
|
|
|
+ private RedisBackedQueue queueProvider;
|
|
|
+
|
|
|
+ @PostConstruct
|
|
|
+ public void init() {
|
|
|
+ queueProvider = new RedisBackedQueue(client, 15 * 60 * 1000L);
|
|
|
+ }
|
|
|
+
|
|
|
+ public List<Video> feeds(final RecommendRequest requestData,
|
|
|
+ final int requestIndex,
|
|
|
+ final User userInfo, Boolean logPrint) {
|
|
|
+ // Step 1: Attention extraction
|
|
|
+ Stopwatch stopwatch = Stopwatch.createStarted();
|
|
|
+ stopwatch.reset().start();
|
|
|
+ List<RankItem> rankItems = feedByRec(requestData, requestIndex, userInfo, logPrint);
|
|
|
+ if (rankItems == null || rankItems.isEmpty()) {
|
|
|
+ return new ArrayList<>();
|
|
|
+ }
|
|
|
+ if (logPrint) {
|
|
|
+ log.info("traceId = {}, cost = {}, feeds rankItems = {}", requestData.getRequestId(),
|
|
|
+ stopwatch.elapsed().toMillis(), JSONUtils.toJson(rankItems));
|
|
|
+ }
|
|
|
+ stopwatch.reset().start();
|
|
|
+ List<Video> videos = rankItem2Video(rankItems);
|
|
|
+ if (logPrint) {
|
|
|
+ log.info("traceId = {}, cost = {}, videos = {}", requestData.getRequestId(),
|
|
|
+ stopwatch.elapsed().toMillis(), JSONUtils.toJson(videos));
|
|
|
+ }
|
|
|
+ return videos;
|
|
|
+ }
|
|
|
+
|
|
|
+ public List<Double> getStaticData(Map<String, Map<String, Double>> itemRealMap,
|
|
|
+ List<String> datehours, String key){
|
|
|
+ List<Double> views = new LinkedList<>();
|
|
|
+ Map<String, Double> tmp = itemRealMap.getOrDefault(key, new HashMap<>());
|
|
|
+ for (String dh : datehours){
|
|
|
+ views.add(tmp.getOrDefault(dh, 0.0D) +
|
|
|
+ (views.isEmpty() ? 0.0: views.get(views.size()-1))
|
|
|
+ );
|
|
|
+ }
|
|
|
+ return views;
|
|
|
+ }
|
|
|
+
|
|
|
+ public Double calScoreWeight(List<Double> data){
|
|
|
+ Double up = 0.0;
|
|
|
+ Double down = 0.0;
|
|
|
+ for (int i=0; i<data.size(); ++i){
|
|
|
+ up += 1.0 / (i + 1) * data.get(i);
|
|
|
+ down += 1.0 / (i + 1);
|
|
|
+ }
|
|
|
+ return down > 1E-8? up / down: 0.0;
|
|
|
+ }
|
|
|
+ public List<Double> getRateData(List<Double> ups, List<Double> downs, Double up, Double down){
|
|
|
+ List<Double> data = new LinkedList<>();
|
|
|
+ for(int i=0; i<ups.size(); ++i){
|
|
|
+ data.add(
|
|
|
+ (ups.get(i) + up) / (downs.get(i) + down)
|
|
|
+ );
|
|
|
+ }
|
|
|
+ return data;
|
|
|
+ }
|
|
|
+
|
|
|
+ public List<RankItem> feedByRec(final RecommendRequest requestData,
|
|
|
+ final int requestIndex,
|
|
|
+ final User userInfo, Boolean logPrint) {
|
|
|
+ int recallNum = 150;
|
|
|
+
|
|
|
+ Stopwatch stopwatch = Stopwatch.createStarted();
|
|
|
+
|
|
|
+ // Step 2: create top queue
|
|
|
+ stopwatch.reset().start();
|
|
|
+ StrategyQueue topQueue = MergeUtils.createTopQueue(MERGE_CONF, "top-queue");
|
|
|
+ if (logPrint) {
|
|
|
+ log.info("traceId = {}, cost = {}, topQueue = {}", requestData.getRequestId(),
|
|
|
+ stopwatch.elapsed().toMillis(), JSONUtils.toJson(topQueue));
|
|
|
+ }
|
|
|
+
|
|
|
+ // Step 3: Candidate
|
|
|
+ stopwatch.reset().start();
|
|
|
+ Map<String, Candidate> candidates = new HashMap<String, Candidate>();
|
|
|
+ topQueue.candidate(candidates, recallNum, userInfo, requestData, 0, 0);
|
|
|
+ if (logPrint) {
|
|
|
+ log.info("traceId = {}, cost = {}, candidates = {}", requestData.getRequestId(),
|
|
|
+ stopwatch.elapsed().toMillis(), JSONUtils.toJson(candidates));
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ // Step 4: Recalling & Basic Scoring
|
|
|
+ stopwatch.reset().start();
|
|
|
+ BaseRecaller recaller = new BaseRecaller(queueProvider);
|
|
|
+ List<RankItem> items = recaller.recalling(requestData, userInfo, new ArrayList<>(candidates.values()));
|
|
|
+ if (logPrint) {
|
|
|
+ log.info("traceId = {}, cost = {}, items = {}", requestData.getRequestId(),
|
|
|
+ stopwatch.elapsed().toMillis(), JSONUtils.toJson(items));
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ // Step 4: Advance Scoring
|
|
|
+// timestamp = System.currentTimeMillis();
|
|
|
+// ScorerPipeline scorerPipeline = getScorerPipeline(requestData);
|
|
|
+// items = scorerPipeline.scoring(requestData, userInfo, requestIndex, items);
|
|
|
+ if (CollectionUtils.isEmpty(items)) {
|
|
|
+ return new ArrayList<>();
|
|
|
+ }
|
|
|
+
|
|
|
+ stopwatch.reset().start();
|
|
|
+ // Step 5: Merger
|
|
|
+ MergeUtils.distributeItemsToMultiQueues(topQueue, items);
|
|
|
+ topQueue.merge(recallNum * 3, userInfo, requestData, requestIndex, 0);
|
|
|
+
|
|
|
+ // 多样性融合
|
|
|
+ List<RankItem> mergeItems = topQueue.getItems();
|
|
|
+ if (CollectionUtils.isEmpty(mergeItems)) {
|
|
|
+ return new ArrayList<>();
|
|
|
+ }
|
|
|
+ duplicate(mergeItems);
|
|
|
+
|
|
|
+ if (logPrint) {
|
|
|
+ log.info("traceId = {}, cost = {}, mergeItems = {}", requestData.getRequestId(),
|
|
|
+ stopwatch.elapsed().toMillis(), JSONUtils.toJson(mergeItems));
|
|
|
+ }
|
|
|
+// MergeUtils.diversityRerank(mergeItems, SimilarityUtils.getIsSameUserTagOrCategoryFunc(), recallNum, 6, 2);
|
|
|
+
|
|
|
+ // Step 6: Global Rank & subList
|
|
|
+ // TODO 前置和后置处理逻辑 hardcode,后续优化
|
|
|
+ stopwatch.reset().start();
|
|
|
+ List<RankItem> rovRecallRankNewScore = rankByScore(mergeItems, requestData);
|
|
|
+ if (logPrint) {
|
|
|
+ log.info("traceId = {}, cost = {}, rovRecallRankNewScore = {}", requestData.getRequestId(),
|
|
|
+ stopwatch.elapsed().toMillis(), JSONUtils.toJson(rovRecallRankNewScore));
|
|
|
+ }
|
|
|
+
|
|
|
+ return rovRecallRankNewScore;
|
|
|
+ }
|
|
|
+
|
|
|
+ private List<Video> rankItem2Video(List<RankItem> items) {
|
|
|
+ List<String> rtFeaPartKey = new ArrayList<>(Arrays.asList("item_rt_fea_1day_partition", "item_rt_fea_1h_partition"));
|
|
|
+ List<String> rtFeaPartKeyResult = this.redisTemplate.opsForValue().multiGet(rtFeaPartKey);
|
|
|
+ Calendar calendar = Calendar.getInstance();
|
|
|
+ String date = new SimpleDateFormat("yyyyMMdd").format(calendar.getTime());
|
|
|
+ String hour = new SimpleDateFormat("HH").format(calendar.getTime());
|
|
|
+ String rtFeaPart1h = date + hour;
|
|
|
+ if (rtFeaPartKeyResult != null){
|
|
|
+ if (rtFeaPartKeyResult.get(1) != null){
|
|
|
+ rtFeaPart1h = rtFeaPartKeyResult.get(1);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ // 2 统计分
|
|
|
+ String cur = rtFeaPart1h;
|
|
|
+ List<String> datehours = new LinkedList<>();
|
|
|
+ for (int i=0; i<24; ++i){
|
|
|
+ datehours.add(cur);
|
|
|
+ cur = ExtractorUtils.subtractHours(cur, 1);
|
|
|
+ }
|
|
|
+ for (RankItem item : items){
|
|
|
+ Map<String, String> itemBasicMap = item.getItemBasicFeature();
|
|
|
+ Map<String, Map<String, Double>> itemRealMap = item.getItemRealTimeFeature();
|
|
|
+ List<Double> views = getStaticData(itemRealMap, datehours, "view_pv_list_1h");
|
|
|
+ List<Double> plays = getStaticData(itemRealMap, datehours, "play_pv_list_1h");
|
|
|
+ List<Double> shares = getStaticData(itemRealMap, datehours, "share_pv_list_1h");
|
|
|
+ List<Double> returns = getStaticData(itemRealMap, datehours, "p_return_uv_list_1h");
|
|
|
+ List<Double> allreturns = getStaticData(itemRealMap, datehours, "return_uv_list_1h");
|
|
|
+
|
|
|
+ List<Double> share2return = getRateData(returns, shares, 1.0, 1000.0);
|
|
|
+ Double share2returnScore = calScoreWeight(share2return);
|
|
|
+ List<Double> view2return = getRateData(returns, views, 1.0, 1000.0);
|
|
|
+ Double view2returnScore = calScoreWeight(view2return);
|
|
|
+ List<Double> view2play = getRateData(plays, views, 1.0, 1000.0);
|
|
|
+ Double view2playScore = calScoreWeight(view2play);
|
|
|
+ List<Double> play2share = getRateData(shares, plays, 1.0, 1000.0);
|
|
|
+ Double play2shareScore = calScoreWeight(play2share);
|
|
|
+ item.scoresMap.put("share2returnScore", share2returnScore);
|
|
|
+ item.scoresMap.put("view2returnScore", view2returnScore);
|
|
|
+ item.scoresMap.put("view2playScore", view2playScore);
|
|
|
+ item.scoresMap.put("play2shareScore", play2shareScore);
|
|
|
+
|
|
|
+ Double allreturnsScore = calScoreWeight(allreturns);
|
|
|
+ item.scoresMap.put("allreturnsScore", allreturnsScore);
|
|
|
+ }
|
|
|
+ // 3 融合公式
|
|
|
+ List<Video> result = new ArrayList<>();
|
|
|
+ for (RankItem item : items){
|
|
|
+ double score = item.getScoreStr() *
|
|
|
+ item.scoresMap.getOrDefault("share2returnScore", 0.0) *
|
|
|
+ Math.log(1 + item.scoresMap.getOrDefault("allreturnsScore", 0.0));
|
|
|
+ Video video = new Video();
|
|
|
+ video.setVideoId(Long.parseLong(item.getId()));
|
|
|
+ video.setPushFrom(item.getQueue());
|
|
|
+ video.setScore(score);
|
|
|
+ video.setSortScore(score);
|
|
|
+ video.setScoreStr(item.getScoreStr());
|
|
|
+ video.setScoresMap(item.getScoresMap());
|
|
|
+ result.add(video);
|
|
|
+ }
|
|
|
+ Collections.sort(result, Comparator.comparingDouble(o -> -o.getSortScore()));
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+
|
|
|
+ private void duplicate(List<RankItem> items) {
|
|
|
+ Set<String> ids = new HashSet<>();
|
|
|
+ List<RankItem> result = new ArrayList<>();
|
|
|
+ for (RankItem item : items) {
|
|
|
+ if (ids.contains(item.getId())) {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ ids.add(item.getId());
|
|
|
+ result.add(item);
|
|
|
+ }
|
|
|
+ items.clear();
|
|
|
+ items.addAll(result);
|
|
|
+ }
|
|
|
+
|
|
|
+ public List<RankItem> rankByScore(List<RankItem> rankItems, RecommendRequest param){
|
|
|
+ List<RankItem> result = new ArrayList<>();
|
|
|
+ if (rankItems.isEmpty()){
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+
|
|
|
+ RedisStandaloneConfiguration redisSC = new RedisStandaloneConfiguration();
|
|
|
+ redisSC.setPort(6379);
|
|
|
+ redisSC.setPassword("Wqsd@2019");
|
|
|
+ redisSC.setHostName("r-bp1pi8wyv6lzvgjy5z.redis.rds.aliyuncs.com");
|
|
|
+ RedisConnectionFactory connectionFactory = new JedisConnectionFactory(redisSC);
|
|
|
+ RedisTemplate<String, String> redisTemplate = new RedisTemplate<>();
|
|
|
+ redisTemplate.setConnectionFactory(connectionFactory);
|
|
|
+ redisTemplate.setDefaultSerializer(new StringRedisSerializer());
|
|
|
+ redisTemplate.afterPropertiesSet();
|
|
|
+
|
|
|
+ // 0: 场景特征处理
|
|
|
+ Map<String, String> sceneFeatureMap = this.getSceneFeature(param);
|
|
|
+
|
|
|
+ // 1: user特征处理
|
|
|
+ Map<String, String> userFeatureMap = new HashMap<>();
|
|
|
+ if (param.getMid() != null && !param.getMid().isEmpty()){
|
|
|
+ String midKey = "user_info_4video_" + param.getMid();
|
|
|
+ String userFeatureStr = redisTemplate.opsForValue().get(midKey);
|
|
|
+ if (userFeatureStr != null){
|
|
|
+ try{
|
|
|
+ userFeatureMap = JSONUtils.fromJson(userFeatureStr,
|
|
|
+ new TypeToken<Map<String, String>>() {},
|
|
|
+ userFeatureMap);
|
|
|
+ }catch (Exception e){
|
|
|
+ log.error(String.format("parse user json is wrong in {} with {}", this.getClass().getSimpleName(), e));
|
|
|
+ }
|
|
|
+ }else{
|
|
|
+ JSONObject obj = new JSONObject();
|
|
|
+ obj.put("name", "user_key_in_model_is_null");
|
|
|
+ obj.put("class", this.getClass().getSimpleName());
|
|
|
+ log.info(obj.toString());
|
|
|
+// return videos;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ final Set<String> userFeatureSet = new HashSet<>(Arrays.asList(
|
|
|
+ "machineinfo_brand", "machineinfo_model", "machineinfo_platform", "machineinfo_system",
|
|
|
+ "u_1day_exp_cnt", "u_1day_click_cnt", "u_1day_share_cnt", "u_1day_return_cnt",
|
|
|
+ "u_3day_exp_cnt", "u_3day_click_cnt", "u_3day_share_cnt", "u_3day_return_cnt"
|
|
|
+ ));
|
|
|
+ Iterator<Map.Entry<String, String>> iterator = userFeatureMap.entrySet().iterator();
|
|
|
+ while (iterator.hasNext()) {
|
|
|
+ Map.Entry<String, String> entry = iterator.next();
|
|
|
+ if (!userFeatureSet.contains(entry.getKey())) {
|
|
|
+ iterator.remove();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ Map<String, String> f1 = RankExtractorUserFeature.getOriginFeature(userFeatureMap,
|
|
|
+ new HashSet<String>(Arrays.asList(
|
|
|
+ "machineinfo_brand", "machineinfo_model", "machineinfo_platform", "machineinfo_system"
|
|
|
+ ))
|
|
|
+ );
|
|
|
+ Map<String, String> f2 = RankExtractorUserFeature.getUserRateFeature(userFeatureMap);
|
|
|
+ Map<String, String> f3 = RankExtractorUserFeature.cntFeatureChange(userFeatureMap,
|
|
|
+ new HashSet<String>(Arrays.asList(
|
|
|
+ "u_1day_exp_cnt", "u_1day_click_cnt", "u_1day_share_cnt", "u_1day_return_cnt",
|
|
|
+ "u_3day_exp_cnt", "u_3day_click_cnt", "u_3day_share_cnt", "u_3day_return_cnt"
|
|
|
+ ))
|
|
|
+ );
|
|
|
+ f1.putAll(f2);
|
|
|
+ f1.putAll(f3);
|
|
|
+ log.info("userFeature in model = {}", JSONUtils.toJson(f1));
|
|
|
+
|
|
|
+ // 2-1: item特征处理
|
|
|
+ final Set<String> itemFeatureSet = new HashSet<>(Arrays.asList(
|
|
|
+ "total_time", "play_count_total",
|
|
|
+ "i_1day_exp_cnt", "i_1day_click_cnt", "i_1day_share_cnt", "i_1day_return_cnt",
|
|
|
+ "i_3day_exp_cnt", "i_3day_click_cnt", "i_3day_share_cnt", "i_3day_return_cnt"
|
|
|
+ ));
|
|
|
+
|
|
|
+ List<String> videoIds = CommonCollectionUtils.toListDistinct(rankItems, RankItem::getId);
|
|
|
+ List<String> videoFeatureKeys = videoIds.stream().map(r-> "video_info_" + r)
|
|
|
+ .collect(Collectors.toList());
|
|
|
+ List<String> videoFeatures = redisTemplate.opsForValue().multiGet(videoFeatureKeys);
|
|
|
+ if (videoFeatures != null){
|
|
|
+ for (int i=0; i<videoFeatures.size(); ++i){
|
|
|
+ String vF = videoFeatures.get(i);
|
|
|
+ Map<String, String> vfMap = new HashMap<>();
|
|
|
+ if (vF == null){
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ try{
|
|
|
+ vfMap = JSONUtils.fromJson(vF, new TypeToken<Map<String, String>>() {}, vfMap);
|
|
|
+ rankItems.get(i).setItemBasicFeature(vfMap);
|
|
|
+ Iterator<Map.Entry<String, String>> iteratorIn = vfMap.entrySet().iterator();
|
|
|
+ while (iteratorIn.hasNext()) {
|
|
|
+ Map.Entry<String, String> entry = iteratorIn.next();
|
|
|
+ if (!itemFeatureSet.contains(entry.getKey())) {
|
|
|
+ iteratorIn.remove();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ Map<String, String> f4 = RankExtractorItemFeature.getItemRateFeature(vfMap);
|
|
|
+ Map<String, String> f5 = RankExtractorItemFeature.cntFeatureChange(vfMap,
|
|
|
+ new HashSet<>(Arrays.asList(
|
|
|
+ "total_time", "play_count_total",
|
|
|
+ "i_1day_exp_cnt", "i_1day_click_cnt", "i_1day_share_cnt", "i_1day_return_cnt",
|
|
|
+ "i_3day_exp_cnt", "i_3day_click_cnt", "i_3day_share_cnt", "i_3day_return_cnt"))
|
|
|
+ );
|
|
|
+ f4.putAll(f5);
|
|
|
+ rankItems.get(i).setFeatureMap(f4);
|
|
|
+ }catch (Exception e){
|
|
|
+ log.error(String.format("parse video json is wrong in {} with {}", this.getClass().getSimpleName(), e));
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ // 2-2: item 实时特征处理
|
|
|
+ List<String> rtFeaPartKey = new ArrayList<>(Arrays.asList("item_rt_fea_1day_partition", "item_rt_fea_1h_partition"));
|
|
|
+ List<String> rtFeaPartKeyResult = this.redisTemplate.opsForValue().multiGet(rtFeaPartKey);
|
|
|
+ Calendar calendar = Calendar.getInstance();
|
|
|
+ String date = new SimpleDateFormat("yyyyMMdd").format(calendar.getTime());
|
|
|
+ String hour = new SimpleDateFormat("HH").format(calendar.getTime());
|
|
|
+ String rtFeaPart1day = date + hour;
|
|
|
+ String rtFeaPart1h = date + hour;
|
|
|
+ if (rtFeaPartKeyResult != null){
|
|
|
+ if (rtFeaPartKeyResult.get(0) != null){
|
|
|
+ rtFeaPart1day = rtFeaPartKeyResult.get(0);
|
|
|
+ }
|
|
|
+ if (rtFeaPartKeyResult.get(1) != null){
|
|
|
+ rtFeaPart1h = rtFeaPartKeyResult.get(1);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ List<String> videoRtKeys1 = videoIds.stream().map(r-> "item_rt_fea_1day_" + r)
|
|
|
+ .collect(Collectors.toList());
|
|
|
+ List<String> videoRtKeys2 = videoIds.stream().map(r-> "item_rt_fea_1h_" + r)
|
|
|
+ .collect(Collectors.toList());
|
|
|
+ videoRtKeys1.addAll(videoRtKeys2);
|
|
|
+ List<String> videoRtFeatures = this.redisTemplate.opsForValue().multiGet(videoRtKeys1);
|
|
|
+
|
|
|
+
|
|
|
+ if (videoRtFeatures != null){
|
|
|
+ int j = 0;
|
|
|
+ for (RankItem item: rankItems){
|
|
|
+ String vF = videoRtFeatures.get(j);
|
|
|
+ ++j;
|
|
|
+ if (vF == null){
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ Map<String, String> vfMap = new HashMap<>();
|
|
|
+ Map<String, Map<String, Double>> vfMapNew = new HashMap<>();
|
|
|
+ try{
|
|
|
+ vfMap = JSONUtils.fromJson(vF, new TypeToken<Map<String, String>>() {}, vfMap);
|
|
|
+ for (Map.Entry<String, String> entry : vfMap.entrySet()){
|
|
|
+ String value = entry.getValue();
|
|
|
+ if (value == null){
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ String [] var1 = value.split(",");
|
|
|
+ Map<String, Double> tmp = new HashMap<>();
|
|
|
+ for (String var2 : var1){
|
|
|
+ String [] var3 = var2.split(":");
|
|
|
+ tmp.put(var3[0], Double.valueOf(var3[1]));
|
|
|
+ }
|
|
|
+ vfMapNew.put(entry.getKey(), tmp);
|
|
|
+ }
|
|
|
+ }catch (Exception e){
|
|
|
+ log.error(String.format("parse video item_rt_fea_1day_ json is wrong in {} with {}",
|
|
|
+ this.getClass().getSimpleName(), e));
|
|
|
+ }
|
|
|
+ Map<String, String> f8 = RankExtractorItemFeature.getItemRealtimeRate(vfMapNew, rtFeaPart1day);
|
|
|
+ item.getFeatureMap().putAll(f8);
|
|
|
+ }
|
|
|
+ for (RankItem item: rankItems){
|
|
|
+ String vF = videoRtFeatures.get(j);
|
|
|
+ ++j;
|
|
|
+ if (vF == null){
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ Map<String, String> vfMap = new HashMap<>();
|
|
|
+ Map<String, Map<String, Double>> vfMapNew = new HashMap<>();
|
|
|
+ try{
|
|
|
+ vfMap = JSONUtils.fromJson(vF, new TypeToken<Map<String, String>>() {}, vfMap);
|
|
|
+
|
|
|
+ for (Map.Entry<String, String> entry : vfMap.entrySet()){
|
|
|
+ String value = entry.getValue();
|
|
|
+ if (value == null){
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ String [] var1 = value.split(",");
|
|
|
+ Map<String, Double> tmp = new HashMap<>();
|
|
|
+ for (String var2 : var1){
|
|
|
+ String [] var3 = var2.split(":");
|
|
|
+ tmp.put(var3[0], Double.valueOf(var3[1]));
|
|
|
+ }
|
|
|
+ vfMapNew.put(entry.getKey(), tmp);
|
|
|
+ }
|
|
|
+ item.setItemRealTimeFeature(vfMapNew);
|
|
|
+ }catch (Exception e){
|
|
|
+ log.error(String.format("parse video item_rt_fea_1h_ json is wrong in {} with {}",
|
|
|
+ this.getClass().getSimpleName(), e));
|
|
|
+ }
|
|
|
+ Map<String, String> f8 = RankExtractorItemFeature.getItemRealtimeRate(vfMapNew, rtFeaPart1h);
|
|
|
+ item.getFeatureMap().putAll(f8);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ log.info("ItemFeature = {}", JSONUtils.toJson(videoFeatures));
|
|
|
+
|
|
|
+
|
|
|
+ List<RankItem> rovRecallScore = ScorerUtils.getScorerPipeline(ScorerUtils.BASE_CONF_FEED)
|
|
|
+ .scoring(sceneFeatureMap, userFeatureMap, rankItems);
|
|
|
+ log.info("mergeAndRankRovRecallNew rovRecallScore={}", JSONUtils.toJson(rovRecallScore));
|
|
|
+ JSONObject obj = new JSONObject();
|
|
|
+ obj.put("name", "user_key_in_model_is_not_null");
|
|
|
+ obj.put("class", this.getClass().getSimpleName());
|
|
|
+ log.info(obj.toString());
|
|
|
+ return rovRecallScore;
|
|
|
+ }
|
|
|
+
|
|
|
+ private Map<String, String> getUserFeatureMap(RecommendRequest param, List<RankItem> rankItems) {
|
|
|
+ Map<String, String> userFeatureMap = new HashMap<>(64);
|
|
|
+ if (param.getMid() != null && !param.getMid().isEmpty()){
|
|
|
+ String midKey = "user_info_4video_" + param.getMid();
|
|
|
+ String userFeatureStr = redisTemplate.opsForValue().get(midKey);
|
|
|
+ if (userFeatureStr != null){
|
|
|
+ try{
|
|
|
+ userFeatureMap = JSONUtils.fromJson(userFeatureStr,
|
|
|
+ new TypeToken<Map<String, String>>() {},
|
|
|
+ userFeatureMap);
|
|
|
+ }catch (Exception e){
|
|
|
+ log.error(String.format("parse user json is wrong in {} with {}", this.getClass().getSimpleName(), e));
|
|
|
+ }
|
|
|
+ }else{
|
|
|
+ JSONObject obj = new JSONObject();
|
|
|
+ obj.put("name", "user_key_in_model_is_null");
|
|
|
+ obj.put("class", this.getClass().getSimpleName());
|
|
|
+ log.info(obj.toString());
|
|
|
+// return videos;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ final Set<String> userFeatureSet = new HashSet<>(Arrays.asList(
|
|
|
+ "machineinfo_brand", "machineinfo_model", "machineinfo_platform", "machineinfo_system",
|
|
|
+ "u_1day_exp_cnt", "u_1day_click_cnt", "u_1day_share_cnt", "u_1day_return_cnt",
|
|
|
+ "u_3day_exp_cnt", "u_3day_click_cnt", "u_3day_share_cnt", "u_3day_return_cnt"
|
|
|
+ ));
|
|
|
+ Iterator<Map.Entry<String, String>> iterator = userFeatureMap.entrySet().iterator();
|
|
|
+ while (iterator.hasNext()) {
|
|
|
+ Map.Entry<String, String> entry = iterator.next();
|
|
|
+ if (!userFeatureSet.contains(entry.getKey())) {
|
|
|
+ iterator.remove();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ Map<String, String> f1 = RankExtractorUserFeature.getOriginFeature(userFeatureMap,
|
|
|
+ new HashSet<String>(Arrays.asList(
|
|
|
+ "machineinfo_brand", "machineinfo_model", "machineinfo_platform", "machineinfo_system"
|
|
|
+ ))
|
|
|
+ );
|
|
|
+ Map<String, String> f2 = RankExtractorUserFeature.getUserRateFeature(userFeatureMap);
|
|
|
+ Map<String, String> f3 = RankExtractorUserFeature.cntFeatureChange(userFeatureMap,
|
|
|
+ new HashSet<String>(Arrays.asList(
|
|
|
+ "u_1day_exp_cnt", "u_1day_click_cnt", "u_1day_share_cnt", "u_1day_return_cnt",
|
|
|
+ "u_3day_exp_cnt", "u_3day_click_cnt", "u_3day_share_cnt", "u_3day_return_cnt"
|
|
|
+ ))
|
|
|
+ );
|
|
|
+ f1.putAll(f2);
|
|
|
+ f1.putAll(f3);
|
|
|
+ log.info("userFeature in model = {}", JSONUtils.toJson(f1));
|
|
|
+
|
|
|
+ // 2-1: item特征处理
|
|
|
+ final Set<String> itemFeatureSet = new HashSet<>(Arrays.asList(
|
|
|
+ "total_time", "play_count_total",
|
|
|
+ "i_1day_exp_cnt", "i_1day_click_cnt", "i_1day_share_cnt", "i_1day_return_cnt",
|
|
|
+ "i_3day_exp_cnt", "i_3day_click_cnt", "i_3day_share_cnt", "i_3day_return_cnt"
|
|
|
+ ));
|
|
|
+
|
|
|
+ List<Long> videoIds = CommonCollectionUtils.toListDistinct(rankItems, RankItem::getVideoId);
|
|
|
+ List<String> videoFeatureKeys = videoIds.stream().map(r-> "video_info_" + r)
|
|
|
+ .collect(Collectors.toList());
|
|
|
+ List<String> videoFeatures = redisTemplate.opsForValue().multiGet(videoFeatureKeys);
|
|
|
+ if (videoFeatures != null){
|
|
|
+ for (int i=0; i<videoFeatures.size(); ++i){
|
|
|
+ String vF = videoFeatures.get(i);
|
|
|
+ Map<String, String> vfMap = new HashMap<>();
|
|
|
+ if (vF == null){
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ try{
|
|
|
+ vfMap = JSONUtils.fromJson(vF, new TypeToken<Map<String, String>>() {}, vfMap);
|
|
|
+ Map<String, String> vfMapCopy = new HashMap<>(vfMap);
|
|
|
+ rankItems.get(i).setItemBasicFeature(vfMapCopy);
|
|
|
+ Iterator<Map.Entry<String, String>> iteratorIn = vfMap.entrySet().iterator();
|
|
|
+ while (iteratorIn.hasNext()) {
|
|
|
+ Map.Entry<String, String> entry = iteratorIn.next();
|
|
|
+ if (!itemFeatureSet.contains(entry.getKey())) {
|
|
|
+ iteratorIn.remove();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ Map<String, String> f4 = RankExtractorItemFeature.getItemRateFeature(vfMap);
|
|
|
+ Map<String, String> f5 = RankExtractorItemFeature.cntFeatureChange(vfMap,
|
|
|
+ new HashSet<String>(Arrays.asList(
|
|
|
+ "total_time", "play_count_total",
|
|
|
+ "i_1day_exp_cnt", "i_1day_click_cnt", "i_1day_share_cnt", "i_1day_return_cnt",
|
|
|
+ "i_3day_exp_cnt", "i_3day_click_cnt", "i_3day_share_cnt", "i_3day_return_cnt"))
|
|
|
+ );
|
|
|
+ f4.putAll(f5);
|
|
|
+ rankItems.get(i).setFeatureMap(f4);
|
|
|
+ }catch (Exception e){
|
|
|
+ log.error(String.format("parse video json is wrong in {} with {}", this.getClass().getSimpleName(), e));
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ // 2-2: item 实时特征处理
|
|
|
+ List<String> rtFeaPartKey = new ArrayList<>(Arrays.asList("item_rt_fea_1day_partition", "item_rt_fea_1h_partition"));
|
|
|
+ List<String> rtFeaPartKeyResult = this.redisTemplate.opsForValue().multiGet(rtFeaPartKey);
|
|
|
+ Calendar calendar = Calendar.getInstance();
|
|
|
+ String date = new SimpleDateFormat("yyyyMMdd").format(calendar.getTime());
|
|
|
+ String hour = new SimpleDateFormat("HH").format(calendar.getTime());
|
|
|
+ String rtFeaPart1day = date + hour;
|
|
|
+ String rtFeaPart1h = date + hour;
|
|
|
+ if (rtFeaPartKeyResult != null){
|
|
|
+ if (rtFeaPartKeyResult.get(0) != null){
|
|
|
+ rtFeaPart1day = rtFeaPartKeyResult.get(0);
|
|
|
+ }
|
|
|
+ if (rtFeaPartKeyResult.get(1) != null){
|
|
|
+ rtFeaPart1h = rtFeaPartKeyResult.get(1);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ List<String> videoRtKeys1 = videoIds.stream().map(r-> "item_rt_fea_1day_" + r)
|
|
|
+ .collect(Collectors.toList());
|
|
|
+ List<String> videoRtKeys2 = videoIds.stream().map(r-> "item_rt_fea_1h_" + r)
|
|
|
+ .collect(Collectors.toList());
|
|
|
+ videoRtKeys1.addAll(videoRtKeys2);
|
|
|
+ List<String> videoRtFeatures = this.redisTemplate.opsForValue().multiGet(videoRtKeys1);
|
|
|
+
|
|
|
+
|
|
|
+ if (videoRtFeatures != null){
|
|
|
+ int j = 0;
|
|
|
+ for (RankItem item: rankItems){
|
|
|
+ ++j;
|
|
|
+ if (j >= rankItems.size()) {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ Map<String, String> vfMap = new HashMap<>();
|
|
|
+ Map<String, Map<String, Double>> vfMapNew = new HashMap<>();
|
|
|
+ try {
|
|
|
+ String vF = videoRtFeatures.get(j);
|
|
|
+ if (vF == null) {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ vfMap = JSONUtils.fromJson(vF, new TypeToken<Map<String, String>>() {
|
|
|
+ }, vfMap);
|
|
|
+ for (Map.Entry<String, String> entry : vfMap.entrySet()) {
|
|
|
+ String value = entry.getValue();
|
|
|
+ if (value == null) {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ String[] var1 = value.split(",");
|
|
|
+ Map<String, Double> tmp = new HashMap<>();
|
|
|
+ for (String var2 : var1) {
|
|
|
+ String[] var3 = var2.split(":");
|
|
|
+ tmp.put(var3[0], Double.valueOf(var3[1]));
|
|
|
+ }
|
|
|
+ vfMapNew.put(entry.getKey(), tmp);
|
|
|
+ }
|
|
|
+ }catch (Exception e){
|
|
|
+ log.error(String.format("parse video item_rt_fea_1day_ json is wrong in {} with {}",
|
|
|
+ this.getClass().getSimpleName(), e));
|
|
|
+ }
|
|
|
+ Map<String, String> f8 = RankExtractorItemFeature.getItemRealtimeRate(vfMapNew, rtFeaPart1day);
|
|
|
+ item.getFeatureMap().putAll(f8);
|
|
|
+ }
|
|
|
+ for (RankItem item: rankItems){
|
|
|
+ ++j;
|
|
|
+ if (j >= rankItems.size()) {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ Map<String, String> vfMap = new HashMap<>();
|
|
|
+ Map<String, Map<String, Double>> vfMapNew = new HashMap<>();
|
|
|
+ try {
|
|
|
+ String vF = videoRtFeatures.get(j);
|
|
|
+ if (vF == null) {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ vfMap = JSONUtils.fromJson(vF, new TypeToken<Map<String, String>>() {
|
|
|
+ }, vfMap);
|
|
|
+
|
|
|
+ for (Map.Entry<String, String> entry : vfMap.entrySet()) {
|
|
|
+ String value = entry.getValue();
|
|
|
+ if (value == null) {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ String[] var1 = value.split(",");
|
|
|
+ Map<String, Double> tmp = new HashMap<>();
|
|
|
+ for (String var2 : var1) {
|
|
|
+ String [] var3 = var2.split(":");
|
|
|
+ tmp.put(var3[0], Double.valueOf(var3[1]));
|
|
|
+ }
|
|
|
+ vfMapNew.put(entry.getKey(), tmp);
|
|
|
+ }
|
|
|
+ item.setItemRealTimeFeature(vfMapNew);
|
|
|
+ }catch (Exception e){
|
|
|
+ log.error(String.format("parse video item_rt_fea_1h_ json is wrong in {} with {}",
|
|
|
+ this.getClass().getSimpleName(), e));
|
|
|
+ }
|
|
|
+ Map<String, String> f8 = RankExtractorItemFeature.getItemRealtimeRate(vfMapNew, rtFeaPart1h);
|
|
|
+ item.getFeatureMap().putAll(f8);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ log.info("ItemFeature = {}", JSONUtils.toJson(videoFeatures));
|
|
|
+ return userFeatureMap;
|
|
|
+ }
|
|
|
+
|
|
|
+ private Map<String, String> getSceneFeature(RecommendRequest param) {
|
|
|
+ Map<String, String> sceneFeatureMap = new HashMap<>();
|
|
|
+ String provinceCn = param.getProvince();
|
|
|
+ provinceCn = provinceCn.replaceAll("省$", "");
|
|
|
+ sceneFeatureMap.put("ctx_region", provinceCn);
|
|
|
+ String city = param.getCity();
|
|
|
+ if ("台北市".equals(city) |
|
|
|
+ "高雄市".equals(city) |
|
|
|
+ "台中市".equals(city) |
|
|
|
+ "桃园市".equals(city) |
|
|
|
+ "新北市".equals(city) |
|
|
|
+ "台南市".equals(city) |
|
|
|
+ "基隆市".equals(city) |
|
|
|
+ "吉林市".equals(city) |
|
|
|
+ "新竹市".equals(city) |
|
|
|
+ "嘉义市".equals(city)
|
|
|
+ ){
|
|
|
+ }else{
|
|
|
+ city = city.replaceAll("市$", "");
|
|
|
+ }
|
|
|
+ sceneFeatureMap.put("ctx_city", city);
|
|
|
+
|
|
|
+ Calendar calendar = Calendar.getInstance();
|
|
|
+ sceneFeatureMap.put("ctx_week", (calendar.get(Calendar.DAY_OF_WEEK) + 6) % 7 + "");
|
|
|
+ sceneFeatureMap.put("ctx_hour", new SimpleDateFormat("HH").format(calendar.getTime()));
|
|
|
+
|
|
|
+ return sceneFeatureMap;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+}
|