|
@@ -11,19 +11,23 @@ import com.tzld.piaoquan.recommend.server.framework.merger.MergeUtils;
|
|
|
import com.tzld.piaoquan.recommend.server.framework.merger.StrategyQueue;
|
|
|
import com.tzld.piaoquan.recommend.server.framework.recaller.BaseRecaller;
|
|
|
import com.tzld.piaoquan.recommend.server.framework.recaller.provider.RedisBackedQueue;
|
|
|
-import com.tzld.piaoquan.recommend.server.framework.score.ScorerUtils;
|
|
|
import com.tzld.piaoquan.recommend.server.framework.utils.RedisSmartClient;
|
|
|
import com.tzld.piaoquan.recommend.server.gen.recommend.RecommendRequest;
|
|
|
import com.tzld.piaoquan.recommend.server.model.Video;
|
|
|
import com.tzld.piaoquan.recommend.server.service.rank.extractor.ExtractorUtils;
|
|
|
import com.tzld.piaoquan.recommend.server.service.rank.extractor.RankExtractorItemFeature;
|
|
|
import com.tzld.piaoquan.recommend.server.service.rank.extractor.RankExtractorUserFeature;
|
|
|
+import com.tzld.piaoquan.recommend.server.service.score.ScorerUtils;
|
|
|
import com.tzld.piaoquan.recommend.server.util.CommonCollectionUtils;
|
|
|
import com.tzld.piaoquan.recommend.server.util.JSONUtils;
|
|
|
import org.apache.commons.collections4.CollectionUtils;
|
|
|
import org.slf4j.Logger;
|
|
|
import org.slf4j.LoggerFactory;
|
|
|
+import org.springframework.data.redis.connection.RedisConnectionFactory;
|
|
|
+import org.springframework.data.redis.connection.RedisStandaloneConfiguration;
|
|
|
+import org.springframework.data.redis.connection.jedis.JedisConnectionFactory;
|
|
|
import org.springframework.data.redis.core.RedisTemplate;
|
|
|
+import org.springframework.data.redis.serializer.StringRedisSerializer;
|
|
|
import org.springframework.stereotype.Service;
|
|
|
|
|
|
import javax.annotation.Resource;
|
|
@@ -62,92 +66,13 @@ public class TopRecommendPipeline {
|
|
|
if (logPrint) {
|
|
|
log.info("traceId = {}, rankItems = {}", requestData.getRequestId(), JSONUtils.toJson(rankItems));
|
|
|
}
|
|
|
- List<Video> videos = rankVideos(rankItems, requestData.getRequestId());
|
|
|
+ List<Video> videos = rankItem2Video(rankItems);
|
|
|
if (logPrint) {
|
|
|
log.info("traceId = {}, videos = {}", requestData.getRequestId(), JSONUtils.toJson(videos));
|
|
|
}
|
|
|
return videos;
|
|
|
}
|
|
|
|
|
|
- private List<Video> rankVideos(List<RankItem> rankItems, String requestId) {
|
|
|
- List<String> rtFeaPartKey = new ArrayList<>(Arrays.asList("item_rt_fea_1day_partition", "item_rt_fea_1h_partition"));
|
|
|
- List<String> rtFeaPartKeyResult = this.redisTemplate.opsForValue().multiGet(rtFeaPartKey);
|
|
|
- Calendar calendar = Calendar.getInstance();
|
|
|
- String date = new SimpleDateFormat("yyyyMMdd").format(calendar.getTime());
|
|
|
- String hour = new SimpleDateFormat("HH").format(calendar.getTime());
|
|
|
- String rtFeaPart1h = date + hour;
|
|
|
- if (rtFeaPartKeyResult != null) {
|
|
|
- if (rtFeaPartKeyResult.get(1) != null) {
|
|
|
- rtFeaPart1h = rtFeaPartKeyResult.get(1);
|
|
|
- }
|
|
|
- }
|
|
|
- // 2 统计分
|
|
|
- String cur = rtFeaPart1h;
|
|
|
- List<String> datehours = new LinkedList<>();
|
|
|
- for (int i = 0; i < 24; ++i) {
|
|
|
- datehours.add(cur);
|
|
|
- cur = ExtractorUtils.subtractHours(cur, 1);
|
|
|
- }
|
|
|
- for (RankItem item : rankItems) {
|
|
|
- Map<String, String> itemBasicMap = item.getItemBasicFeature();
|
|
|
- Map<String, Map<String, Double>> itemRealMap = item.getItemRealTimeFeature();
|
|
|
- List<Double> views = getStaticData(itemRealMap, datehours, "view_pv_list_1h");
|
|
|
- List<Double> plays = getStaticData(itemRealMap, datehours, "play_pv_list_1h");
|
|
|
- List<Double> shares = getStaticData(itemRealMap, datehours, "share_pv_list_1h");
|
|
|
- List<Double> returns = getStaticData(itemRealMap, datehours, "p_return_uv_list_1h");
|
|
|
- List<Double> allreturns = getStaticData(itemRealMap, datehours, "return_uv_list_1h");
|
|
|
-
|
|
|
- List<Double> share2return = getRateData(returns, shares, 1.0, 1000.0);
|
|
|
- Double share2returnScore = calScoreWeight(share2return);
|
|
|
- List<Double> view2return = getRateData(returns, views, 1.0, 1000.0);
|
|
|
- Double view2returnScore = calScoreWeight(view2return);
|
|
|
- List<Double> view2play = getRateData(plays, views, 1.0, 1000.0);
|
|
|
- Double view2playScore = calScoreWeight(view2play);
|
|
|
- List<Double> play2share = getRateData(shares, plays, 1.0, 1000.0);
|
|
|
- Double play2shareScore = calScoreWeight(play2share);
|
|
|
- item.scoresMap.put("share2returnScore", share2returnScore);
|
|
|
- item.scoresMap.put("view2returnScore", view2returnScore);
|
|
|
- item.scoresMap.put("view2playScore", view2playScore);
|
|
|
- item.scoresMap.put("play2shareScore", play2shareScore);
|
|
|
-
|
|
|
- Double allreturnsScore = calScoreWeight(allreturns);
|
|
|
- item.scoresMap.put("allreturnsScore", allreturnsScore);
|
|
|
-
|
|
|
- // rov的趋势
|
|
|
- double trendScore = calTrendScore(view2return);
|
|
|
- item.scoresMap.put("trendScore", trendScore);
|
|
|
-
|
|
|
- // 新视频提取
|
|
|
- double newVideoScore = calNewVideoScore(itemBasicMap);
|
|
|
- item.scoresMap.put("newVideoScore", newVideoScore);
|
|
|
-
|
|
|
- }
|
|
|
- // 3 融合公式
|
|
|
- List<Video> result = new ArrayList<>();
|
|
|
- double alpha = this.mergeWeight.getOrDefault("alpha", 1.0);
|
|
|
- double beta = this.mergeWeight.getOrDefault("beta", 1.0);
|
|
|
- for (RankItem item : rankItems) {
|
|
|
- double trendScore = item.scoresMap.getOrDefault("trendScore", 0.0) > 0.0 ?
|
|
|
- item.scoresMap.getOrDefault("trendScore", 0.0) : 0.0;
|
|
|
- double newVideoScore = item.scoresMap.getOrDefault("newVideoScore", 0.0) > 0.0 ?
|
|
|
- item.scoresMap.getOrDefault("newVideoScore", 0.0) : 0.0;
|
|
|
- double score = item.getScoreStr() *
|
|
|
- item.scoresMap.getOrDefault("share2returnScore", 0.0)
|
|
|
- + alpha * trendScore
|
|
|
- + beta * newVideoScore;
|
|
|
- Video video = new Video();
|
|
|
- video.setVideoId(Long.parseLong(item.getId()));
|
|
|
- video.setPushFrom(item.getQueue());
|
|
|
- video.setScore(score);
|
|
|
- video.setSortScore(score);
|
|
|
- video.setScoreStr(item.getScoreStr());
|
|
|
- video.setScoresMap(item.getScoresMap());
|
|
|
- result.add(video);
|
|
|
- }
|
|
|
- Collections.sort(result, Comparator.comparingDouble(o -> -o.getSortScore()));
|
|
|
- return result;
|
|
|
- }
|
|
|
-
|
|
|
public List<Double> getStaticData(Map<String, Map<String, Double>> itemRealMap,
|
|
|
List<String> datehours, String key){
|
|
|
List<Double> views = new LinkedList<>();
|
|
@@ -160,32 +85,6 @@ public class TopRecommendPipeline {
|
|
|
return views;
|
|
|
}
|
|
|
|
|
|
- public double calNewVideoScore(Map<String, String> itemBasicMap){
|
|
|
- double existenceDays = Double.valueOf(itemBasicMap.getOrDefault("existence_days", "30"));
|
|
|
- if (existenceDays > 8){
|
|
|
- return 0.0;
|
|
|
- }
|
|
|
- double score = 1.0 / (existenceDays + 5.0);
|
|
|
- return score;
|
|
|
- }
|
|
|
- public double calTrendScore(List<Double> data){
|
|
|
- double sum = 0.0;
|
|
|
- int size = data.size();
|
|
|
- for (int i=0; i<size-4; ++i){
|
|
|
- sum += data.get(i) - data.get(i+4);
|
|
|
- }
|
|
|
- if (sum * 10 > 0.6){
|
|
|
- sum = 0.6;
|
|
|
- }else{
|
|
|
- sum = sum * 10;
|
|
|
- }
|
|
|
- if (sum > 0){
|
|
|
- // 为了打断点
|
|
|
- sum = sum;
|
|
|
- }
|
|
|
- return sum;
|
|
|
- }
|
|
|
-
|
|
|
public Double calScoreWeight(List<Double> data){
|
|
|
Double up = 0.0;
|
|
|
Double down = 0.0;
|
|
@@ -208,7 +107,7 @@ public class TopRecommendPipeline {
|
|
|
public List<RankItem> feedByRec(final RecommendRequest requestData,
|
|
|
final int requestIndex,
|
|
|
final User userInfo, Boolean logPrint) {
|
|
|
- int recallNum = 200;
|
|
|
+ int recallNum = 150;
|
|
|
|
|
|
// Step 1: Attention extraction
|
|
|
// long timestamp = System.currentTimeMillis();
|
|
@@ -253,6 +152,11 @@ public class TopRecommendPipeline {
|
|
|
|
|
|
// 多样性融合
|
|
|
List<RankItem> mergeItems = topQueue.getItems();
|
|
|
+ if (CollectionUtils.isEmpty(mergeItems)) {
|
|
|
+ return new ArrayList<>();
|
|
|
+ }
|
|
|
+ duplicate(mergeItems);
|
|
|
+
|
|
|
if (logPrint) {
|
|
|
log.info("traceId = {}, mergeItems = {}", requestData.getRequestId(), JSONUtils.toJson(mergeItems));
|
|
|
}
|
|
@@ -260,15 +164,305 @@ public class TopRecommendPipeline {
|
|
|
|
|
|
// Step 6: Global Rank & subList
|
|
|
// TODO 前置和后置处理逻辑 hardcode,后续优化
|
|
|
- Map<String, String> sceneFeatureMap = getSceneFeature(requestData);
|
|
|
- Map<String, String> userFeatureMap = getUserFeatureMap(requestData, mergeItems);
|
|
|
- List<RankItem> rovRecallRankNewallScore = ScorerUtils.getScorerPipeline(ScorerUtils.BASE_CONF_NEW_FEED)
|
|
|
- .scoring(sceneFeatureMap, userFeatureMap, mergeItems);
|
|
|
+ List<RankItem> rovRecallRankNewScore = rankByScore(mergeItems, requestData);
|
|
|
if (logPrint) {
|
|
|
- log.info("traceId = {}, rovRecallRankNewallScore = {}", requestData.getRequestId(), JSONUtils.toJson(rovRecallRankNewallScore));
|
|
|
+ log.info("traceId = {}, rovRecallRankNewScore = {}", requestData.getRequestId(), JSONUtils.toJson(rovRecallRankNewScore));
|
|
|
}
|
|
|
|
|
|
- return rovRecallRankNewallScore;
|
|
|
+ return rovRecallRankNewScore;
|
|
|
+ }
|
|
|
+
|
|
|
+ private List<Video> rankItem2Video(List<RankItem> items) {
|
|
|
+ List<String> rtFeaPartKey = new ArrayList<>(Arrays.asList("item_rt_fea_1day_partition", "item_rt_fea_1h_partition"));
|
|
|
+ List<String> rtFeaPartKeyResult = this.redisTemplate.opsForValue().multiGet(rtFeaPartKey);
|
|
|
+ Calendar calendar = Calendar.getInstance();
|
|
|
+ String date = new SimpleDateFormat("yyyyMMdd").format(calendar.getTime());
|
|
|
+ String hour = new SimpleDateFormat("HH").format(calendar.getTime());
|
|
|
+ String rtFeaPart1h = date + hour;
|
|
|
+ if (rtFeaPartKeyResult != null){
|
|
|
+ if (rtFeaPartKeyResult.get(1) != null){
|
|
|
+ rtFeaPart1h = rtFeaPartKeyResult.get(1);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ // 2 统计分
|
|
|
+ String cur = rtFeaPart1h;
|
|
|
+ List<String> datehours = new LinkedList<>();
|
|
|
+ for (int i=0; i<24; ++i){
|
|
|
+ datehours.add(cur);
|
|
|
+ cur = ExtractorUtils.subtractHours(cur, 1);
|
|
|
+ }
|
|
|
+ for (RankItem item : items){
|
|
|
+ Map<String, String> itemBasicMap = item.getItemBasicFeature();
|
|
|
+ Map<String, Map<String, Double>> itemRealMap = item.getItemRealTimeFeature();
|
|
|
+ List<Double> views = getStaticData(itemRealMap, datehours, "view_pv_list_1h");
|
|
|
+ List<Double> plays = getStaticData(itemRealMap, datehours, "play_pv_list_1h");
|
|
|
+ List<Double> shares = getStaticData(itemRealMap, datehours, "share_pv_list_1h");
|
|
|
+ List<Double> returns = getStaticData(itemRealMap, datehours, "p_return_uv_list_1h");
|
|
|
+ List<Double> allreturns = getStaticData(itemRealMap, datehours, "return_uv_list_1h");
|
|
|
+
|
|
|
+ List<Double> share2return = getRateData(returns, shares, 1.0, 1000.0);
|
|
|
+ Double share2returnScore = calScoreWeight(share2return);
|
|
|
+ List<Double> view2return = getRateData(returns, views, 1.0, 1000.0);
|
|
|
+ Double view2returnScore = calScoreWeight(view2return);
|
|
|
+ List<Double> view2play = getRateData(plays, views, 1.0, 1000.0);
|
|
|
+ Double view2playScore = calScoreWeight(view2play);
|
|
|
+ List<Double> play2share = getRateData(shares, plays, 1.0, 1000.0);
|
|
|
+ Double play2shareScore = calScoreWeight(play2share);
|
|
|
+ item.scoresMap.put("share2returnScore", share2returnScore);
|
|
|
+ item.scoresMap.put("view2returnScore", view2returnScore);
|
|
|
+ item.scoresMap.put("view2playScore", view2playScore);
|
|
|
+ item.scoresMap.put("play2shareScore", play2shareScore);
|
|
|
+
|
|
|
+ Double allreturnsScore = calScoreWeight(allreturns);
|
|
|
+ item.scoresMap.put("allreturnsScore", allreturnsScore);
|
|
|
+ }
|
|
|
+ // 3 融合公式
|
|
|
+ List<Video> result = new ArrayList<>();
|
|
|
+ for (RankItem item : items){
|
|
|
+ double score = item.getScoreStr() *
|
|
|
+ item.scoresMap.getOrDefault("share2returnScore", 0.0) *
|
|
|
+ Math.log(1 + item.scoresMap.getOrDefault("allreturnsScore", 0.0));
|
|
|
+ Video video = new Video();
|
|
|
+ video.setVideoId(Long.parseLong(item.getId()));
|
|
|
+ video.setPushFrom(item.getQueue());
|
|
|
+ video.setScore(score);
|
|
|
+ video.setSortScore(score);
|
|
|
+ video.setScoreStr(item.getScoreStr());
|
|
|
+ video.setScoresMap(item.getScoresMap());
|
|
|
+ result.add(video);
|
|
|
+ }
|
|
|
+ Collections.sort(result, Comparator.comparingDouble(o -> -o.getSortScore()));
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+
|
|
|
+ private void duplicate(List<RankItem> items) {
|
|
|
+ Set<String> ids = new HashSet<>();
|
|
|
+ List<RankItem> result = new ArrayList<>();
|
|
|
+ for (RankItem item : items) {
|
|
|
+ if (ids.contains(item.getId())) {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ ids.add(item.getId());
|
|
|
+ result.add(item);
|
|
|
+ }
|
|
|
+ items.clear();
|
|
|
+ items.addAll(result);
|
|
|
+ }
|
|
|
+
|
|
|
+ public List<RankItem> rankByScore(List<RankItem> rankItems, RecommendRequest param){
|
|
|
+ List<RankItem> result = new ArrayList<>();
|
|
|
+ if (rankItems.isEmpty()){
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+
|
|
|
+ RedisStandaloneConfiguration redisSC = new RedisStandaloneConfiguration();
|
|
|
+ redisSC.setPort(6379);
|
|
|
+ redisSC.setPassword("Wqsd@2019");
|
|
|
+ redisSC.setHostName("r-bp1pi8wyv6lzvgjy5z.redis.rds.aliyuncs.com");
|
|
|
+ RedisConnectionFactory connectionFactory = new JedisConnectionFactory(redisSC);
|
|
|
+ RedisTemplate<String, String> redisTemplate = new RedisTemplate<>();
|
|
|
+ redisTemplate.setConnectionFactory(connectionFactory);
|
|
|
+ redisTemplate.setDefaultSerializer(new StringRedisSerializer());
|
|
|
+ redisTemplate.afterPropertiesSet();
|
|
|
+
|
|
|
+ // 0: 场景特征处理
|
|
|
+ Map<String, String> sceneFeatureMap = this.getSceneFeature(param);
|
|
|
+
|
|
|
+ // 1: user特征处理
|
|
|
+ Map<String, String> userFeatureMap = new HashMap<>();
|
|
|
+ if (param.getMid() != null && !param.getMid().isEmpty()){
|
|
|
+ String midKey = "user_info_4video_" + param.getMid();
|
|
|
+ String userFeatureStr = redisTemplate.opsForValue().get(midKey);
|
|
|
+ if (userFeatureStr != null){
|
|
|
+ try{
|
|
|
+ userFeatureMap = JSONUtils.fromJson(userFeatureStr,
|
|
|
+ new TypeToken<Map<String, String>>() {},
|
|
|
+ userFeatureMap);
|
|
|
+ }catch (Exception e){
|
|
|
+ log.error(String.format("parse user json is wrong in {} with {}", this.getClass().getSimpleName(), e));
|
|
|
+ }
|
|
|
+ }else{
|
|
|
+ JSONObject obj = new JSONObject();
|
|
|
+ obj.put("name", "user_key_in_model_is_null");
|
|
|
+ obj.put("class", this.getClass().getSimpleName());
|
|
|
+ log.info(obj.toString());
|
|
|
+// return videos;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ final Set<String> userFeatureSet = new HashSet<>(Arrays.asList(
|
|
|
+ "machineinfo_brand", "machineinfo_model", "machineinfo_platform", "machineinfo_system",
|
|
|
+ "u_1day_exp_cnt", "u_1day_click_cnt", "u_1day_share_cnt", "u_1day_return_cnt",
|
|
|
+ "u_3day_exp_cnt", "u_3day_click_cnt", "u_3day_share_cnt", "u_3day_return_cnt"
|
|
|
+ ));
|
|
|
+ Iterator<Map.Entry<String, String>> iterator = userFeatureMap.entrySet().iterator();
|
|
|
+ while (iterator.hasNext()) {
|
|
|
+ Map.Entry<String, String> entry = iterator.next();
|
|
|
+ if (!userFeatureSet.contains(entry.getKey())) {
|
|
|
+ iterator.remove();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ Map<String, String> f1 = RankExtractorUserFeature.getOriginFeature(userFeatureMap,
|
|
|
+ new HashSet<String>(Arrays.asList(
|
|
|
+ "machineinfo_brand", "machineinfo_model", "machineinfo_platform", "machineinfo_system"
|
|
|
+ ))
|
|
|
+ );
|
|
|
+ Map<String, String> f2 = RankExtractorUserFeature.getUserRateFeature(userFeatureMap);
|
|
|
+ Map<String, String> f3 = RankExtractorUserFeature.cntFeatureChange(userFeatureMap,
|
|
|
+ new HashSet<String>(Arrays.asList(
|
|
|
+ "u_1day_exp_cnt", "u_1day_click_cnt", "u_1day_share_cnt", "u_1day_return_cnt",
|
|
|
+ "u_3day_exp_cnt", "u_3day_click_cnt", "u_3day_share_cnt", "u_3day_return_cnt"
|
|
|
+ ))
|
|
|
+ );
|
|
|
+ f1.putAll(f2);
|
|
|
+ f1.putAll(f3);
|
|
|
+ log.info("userFeature in rankByScore = {}", JSONUtils.toJson(f1));
|
|
|
+
|
|
|
+ // 2-1: item特征处理
|
|
|
+ final Set<String> itemFeatureSet = new HashSet<>(Arrays.asList(
|
|
|
+ "total_time", "play_count_total",
|
|
|
+ "i_1day_exp_cnt", "i_1day_click_cnt", "i_1day_share_cnt", "i_1day_return_cnt",
|
|
|
+ "i_3day_exp_cnt", "i_3day_click_cnt", "i_3day_share_cnt", "i_3day_return_cnt"
|
|
|
+ ));
|
|
|
+
|
|
|
+ List<String> videoIds = CommonCollectionUtils.toListDistinct(rankItems, RankItem::getId);
|
|
|
+ List<String> videoFeatureKeys = videoIds.stream().map(r-> "video_info_" + r)
|
|
|
+ .collect(Collectors.toList());
|
|
|
+ List<String> videoFeatures = redisTemplate.opsForValue().multiGet(videoFeatureKeys);
|
|
|
+ if (videoFeatures != null){
|
|
|
+ for (int i=0; i<videoFeatures.size(); ++i){
|
|
|
+ String vF = videoFeatures.get(i);
|
|
|
+ Map<String, String> vfMap = new HashMap<>();
|
|
|
+ if (vF == null){
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ try{
|
|
|
+ vfMap = JSONUtils.fromJson(vF, new TypeToken<Map<String, String>>() {}, vfMap);
|
|
|
+ rankItems.get(i).setItemBasicFeature(vfMap);
|
|
|
+ Iterator<Map.Entry<String, String>> iteratorIn = vfMap.entrySet().iterator();
|
|
|
+ while (iteratorIn.hasNext()) {
|
|
|
+ Map.Entry<String, String> entry = iteratorIn.next();
|
|
|
+ if (!itemFeatureSet.contains(entry.getKey())) {
|
|
|
+ iteratorIn.remove();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ Map<String, String> f4 = RankExtractorItemFeature.getItemRateFeature(vfMap);
|
|
|
+ Map<String, String> f5 = RankExtractorItemFeature.cntFeatureChange(vfMap,
|
|
|
+ new HashSet<>(Arrays.asList(
|
|
|
+ "total_time", "play_count_total",
|
|
|
+ "i_1day_exp_cnt", "i_1day_click_cnt", "i_1day_share_cnt", "i_1day_return_cnt",
|
|
|
+ "i_3day_exp_cnt", "i_3day_click_cnt", "i_3day_share_cnt", "i_3day_return_cnt"))
|
|
|
+ );
|
|
|
+ f4.putAll(f5);
|
|
|
+ rankItems.get(i).setFeatureMap(f4);
|
|
|
+ }catch (Exception e){
|
|
|
+ log.error(String.format("parse video json is wrong in {} with {}", this.getClass().getSimpleName(), e));
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ // 2-2: item 实时特征处理
|
|
|
+ List<String> rtFeaPartKey = new ArrayList<>(Arrays.asList("item_rt_fea_1day_partition", "item_rt_fea_1h_partition"));
|
|
|
+ List<String> rtFeaPartKeyResult = this.redisTemplate.opsForValue().multiGet(rtFeaPartKey);
|
|
|
+ Calendar calendar = Calendar.getInstance();
|
|
|
+ String date = new SimpleDateFormat("yyyyMMdd").format(calendar.getTime());
|
|
|
+ String hour = new SimpleDateFormat("HH").format(calendar.getTime());
|
|
|
+ String rtFeaPart1day = date + hour;
|
|
|
+ String rtFeaPart1h = date + hour;
|
|
|
+ if (rtFeaPartKeyResult != null){
|
|
|
+ if (rtFeaPartKeyResult.get(0) != null){
|
|
|
+ rtFeaPart1day = rtFeaPartKeyResult.get(0);
|
|
|
+ }
|
|
|
+ if (rtFeaPartKeyResult.get(1) != null){
|
|
|
+ rtFeaPart1h = rtFeaPartKeyResult.get(1);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ List<String> videoRtKeys1 = videoIds.stream().map(r-> "item_rt_fea_1day_" + r)
|
|
|
+ .collect(Collectors.toList());
|
|
|
+ List<String> videoRtKeys2 = videoIds.stream().map(r-> "item_rt_fea_1h_" + r)
|
|
|
+ .collect(Collectors.toList());
|
|
|
+ videoRtKeys1.addAll(videoRtKeys2);
|
|
|
+ List<String> videoRtFeatures = this.redisTemplate.opsForValue().multiGet(videoRtKeys1);
|
|
|
+
|
|
|
+
|
|
|
+ if (videoRtFeatures != null){
|
|
|
+ int j = 0;
|
|
|
+ for (RankItem item: rankItems){
|
|
|
+ String vF = videoRtFeatures.get(j);
|
|
|
+ ++j;
|
|
|
+ if (vF == null){
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ Map<String, String> vfMap = new HashMap<>();
|
|
|
+ Map<String, Map<String, Double>> vfMapNew = new HashMap<>();
|
|
|
+ try{
|
|
|
+ vfMap = JSONUtils.fromJson(vF, new TypeToken<Map<String, String>>() {}, vfMap);
|
|
|
+ for (Map.Entry<String, String> entry : vfMap.entrySet()){
|
|
|
+ String value = entry.getValue();
|
|
|
+ if (value == null){
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ String [] var1 = value.split(",");
|
|
|
+ Map<String, Double> tmp = new HashMap<>();
|
|
|
+ for (String var2 : var1){
|
|
|
+ String [] var3 = var2.split(":");
|
|
|
+ tmp.put(var3[0], Double.valueOf(var3[1]));
|
|
|
+ }
|
|
|
+ vfMapNew.put(entry.getKey(), tmp);
|
|
|
+ }
|
|
|
+ }catch (Exception e){
|
|
|
+ log.error(String.format("parse video item_rt_fea_1day_ json is wrong in {} with {}",
|
|
|
+ this.getClass().getSimpleName(), e));
|
|
|
+ }
|
|
|
+ Map<String, String> f8 = RankExtractorItemFeature.getItemRealtimeRate(vfMapNew, rtFeaPart1day);
|
|
|
+ item.getFeatureMap().putAll(f8);
|
|
|
+ }
|
|
|
+ for (RankItem item: rankItems){
|
|
|
+ String vF = videoRtFeatures.get(j);
|
|
|
+ ++j;
|
|
|
+ if (vF == null){
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ Map<String, String> vfMap = new HashMap<>();
|
|
|
+ Map<String, Map<String, Double>> vfMapNew = new HashMap<>();
|
|
|
+ try{
|
|
|
+ vfMap = JSONUtils.fromJson(vF, new TypeToken<Map<String, String>>() {}, vfMap);
|
|
|
+
|
|
|
+ for (Map.Entry<String, String> entry : vfMap.entrySet()){
|
|
|
+ String value = entry.getValue();
|
|
|
+ if (value == null){
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ String [] var1 = value.split(",");
|
|
|
+ Map<String, Double> tmp = new HashMap<>();
|
|
|
+ for (String var2 : var1){
|
|
|
+ String [] var3 = var2.split(":");
|
|
|
+ tmp.put(var3[0], Double.valueOf(var3[1]));
|
|
|
+ }
|
|
|
+ vfMapNew.put(entry.getKey(), tmp);
|
|
|
+ }
|
|
|
+ item.setItemRealTimeFeature(vfMapNew);
|
|
|
+ }catch (Exception e){
|
|
|
+ log.error(String.format("parse video item_rt_fea_1h_ json is wrong in {} with {}",
|
|
|
+ this.getClass().getSimpleName(), e));
|
|
|
+ }
|
|
|
+ Map<String, String> f8 = RankExtractorItemFeature.getItemRealtimeRate(vfMapNew, rtFeaPart1h);
|
|
|
+ item.getFeatureMap().putAll(f8);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ log.info("ItemFeature = {}", JSONUtils.toJson(videoFeatures));
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ List<RankItem> rovRecallScore = ScorerUtils.getScorerPipeline(ScorerUtils.BASE_CONF)
|
|
|
+ .scoring(sceneFeatureMap, userFeatureMap, rankItems);
|
|
|
+ log.info("mergeAndRankRovRecallNew rovRecallScore={}", JSONUtils.toJson(rovRecallScore));
|
|
|
+ JSONObject obj = new JSONObject();
|
|
|
+ obj.put("name", "user_key_in_model_is_not_null");
|
|
|
+ obj.put("class", this.getClass().getSimpleName());
|
|
|
+ log.info(obj.toString());
|
|
|
+ return rovRecallScore;
|
|
|
}
|
|
|
|
|
|
private Map<String, String> getUserFeatureMap(RecommendRequest param, List<RankItem> rankItems) {
|
|
@@ -318,7 +512,7 @@ public class TopRecommendPipeline {
|
|
|
);
|
|
|
f1.putAll(f2);
|
|
|
f1.putAll(f3);
|
|
|
- log.info("userFeature in model = {}", JSONUtils.toJson(f1));
|
|
|
+ log.info("userFeature in rankByScore = {}", JSONUtils.toJson(f1));
|
|
|
|
|
|
// 2-1: item特征处理
|
|
|
final Set<String> itemFeatureSet = new HashSet<>(Arrays.asList(
|