|
@@ -32,8 +32,6 @@ public class RankStrategy4RegionMergeModelV562 extends RankStrategy4RegionMergeM
|
|
@ApolloJsonValue("${rank.score.merge.weightv562:}")
|
|
@ApolloJsonValue("${rank.score.merge.weightv562:}")
|
|
private Map<String, Double> mergeWeight;
|
|
private Map<String, Double> mergeWeight;
|
|
|
|
|
|
- @ApolloJsonValue("${video.vov_model.weightv1:}")
|
|
|
|
- private Map<String, Double> vovWeight;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -342,25 +340,31 @@ public class RankStrategy4RegionMergeModelV562 extends RankStrategy4RegionMergeM
|
|
|
|
|
|
// 获取VoV预测模型参数
|
|
// 获取VoV预测模型参数
|
|
// 融合权重
|
|
// 融合权重
|
|
- double alpha_vov = vovWeight.getOrDefault("alpha_vov", 1.0);
|
|
|
|
|
|
+ double alpha_vov = mergeWeight.getOrDefault("alpha_vov", 1.0);
|
|
|
|
|
|
- double vov_thresh = vovWeight.getOrDefault("vov_thresh", 0.1);
|
|
|
|
|
|
+ double vov_thresh = mergeWeight.getOrDefault("vov_thresh", 0.1);
|
|
|
|
|
|
- double view_thresh = vovWeight.getOrDefault("view_thresh", 1535.0);
|
|
|
|
|
|
+ double view_thresh = mergeWeight.getOrDefault("view_thresh", 1535.0);
|
|
|
|
|
|
- List<Double> weightList = new ArrayList<>();
|
|
|
|
- weightList.add(vovWeight.getOrDefault("d2_ago_vov_w", 0.0));
|
|
|
|
- weightList.add(vovWeight.getOrDefault("d1_ago_vov_w", 0.0));
|
|
|
|
- weightList.add(vovWeight.getOrDefault("h48_ago_vov_w", 0.0));
|
|
|
|
- weightList.add(vovWeight.getOrDefault("h24_ago_vov_w", 0.0));
|
|
|
|
- weightList.add(vovWeight.getOrDefault("h3_ago_vov_w", 0.0));
|
|
|
|
- weightList.add(vovWeight.getOrDefault("h2_ago_vov_w", 0.0));
|
|
|
|
- weightList.add(vovWeight.getOrDefault("h1_ago_vov_w", 0.0));
|
|
|
|
|
|
+ double level50_vov = mergeWeight.getOrDefault("level50_vov", 0.123);
|
|
|
|
+
|
|
|
|
+ double level_95_vov = mergeWeight.getOrDefault("level_95_vov", 0.178);
|
|
|
|
|
|
|
|
+ double beta_vov = mergeWeight.getOrDefault("beta_vov", 100.0);
|
|
|
|
+
|
|
|
|
+ List<Double> weightList = new ArrayList<>();
|
|
|
|
+ weightList.add(mergeWeight.getOrDefault("d2_ago_vov_w", 0.0));
|
|
|
|
+ weightList.add(mergeWeight.getOrDefault("d1_ago_vov_w", 0.0));
|
|
|
|
+ weightList.add(mergeWeight.getOrDefault("h48_ago_vov_w", 0.0));
|
|
|
|
+ weightList.add(mergeWeight.getOrDefault("h24_ago_vov_w", 0.0));
|
|
|
|
+ weightList.add(mergeWeight.getOrDefault("h3_ago_vov_w", 0.0));
|
|
|
|
+ weightList.add(mergeWeight.getOrDefault("h2_ago_vov_w", 0.0));
|
|
|
|
+ weightList.add(mergeWeight.getOrDefault("h1_ago_vov_w", 0.0));
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- Map<String, Map<String, String>> vid2VovFeatureMap = this.getVideoRedisFeature(vids, "redis:vid_vovhour4rank::");
|
|
|
|
|
|
+ Map<String, Map<String, String>> vid2MapFeature = this.getVideoRedisFeature(vids, "redis:vid_hasreturn_rov:");
|
|
|
|
+ Map<String, Map<String, String>> vid2VovFeatureMap = this.getVideoRedisFeature(vids, "redis:vid_vovhour4rank:");
|
|
List<Video> result = new ArrayList<>();
|
|
List<Video> result = new ArrayList<>();
|
|
// String hasReturnRovKey = mergeWeight.getOrDefault("hasReturnRovKey", 1.0) < 0.5 ? "rate_1" : "rate_n";
|
|
// String hasReturnRovKey = mergeWeight.getOrDefault("hasReturnRovKey", 1.0) < 0.5 ? "rate_1" : "rate_n";
|
|
// Double chooseFunction = mergeWeight.getOrDefault("chooseFunction", 0.0);
|
|
// Double chooseFunction = mergeWeight.getOrDefault("chooseFunction", 0.0);
|
|
@@ -416,8 +420,14 @@ public class RankStrategy4RegionMergeModelV562 extends RankStrategy4RegionMergeM
|
|
featureList.add(h1_ago_vov);
|
|
featureList.add(h1_ago_vov);
|
|
|
|
|
|
// todo 线性加权 预测VoV
|
|
// todo 线性加权 预测VoV
|
|
- double vov_p = calculateScore(featureList, weightList, vov_thresh, view_thresh, h1_ago_view);
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
+ double vov_p = calculateScore(featureList, weightList, vov_thresh, view_thresh, h1_ago_view,level50_vov,level_95_vov,beta_vov);
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ double hasReturnRovScore = Double.parseDouble(vid2MapFeature.getOrDefault(item.getVideoId() + "", new HashMap<>())
|
|
|
|
+ .getOrDefault("rate_n", "0"));
|
|
|
|
+ item.getScoresMap().put("hasReturnRovScore", hasReturnRovScore);
|
|
score = fmRov * (1.0 + alpha_vov * vov_p);
|
|
score = fmRov * (1.0 + alpha_vov * vov_p);
|
|
|
|
|
|
|
|
|
|
@@ -444,8 +454,9 @@ public class RankStrategy4RegionMergeModelV562 extends RankStrategy4RegionMergeM
|
|
return result;
|
|
return result;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+
|
|
private double calculateScore(List<Double> featureList, List<Double> weightList,
|
|
private double calculateScore(List<Double> featureList, List<Double> weightList,
|
|
- double vov_thresh, double view_thresh, double h1_ago_view) {
|
|
|
|
|
|
+ double vov_thresh, double view_thresh, double h1_ago_view,double level50_vov,double level_95_vov,double beta_vov) {
|
|
// 检查 h1_ago_view 条件
|
|
// 检查 h1_ago_view 条件
|
|
if (h1_ago_view == -2 || h1_ago_view == -1 || h1_ago_view < view_thresh) {
|
|
if (h1_ago_view == -2 || h1_ago_view == -1 || h1_ago_view < view_thresh) {
|
|
return 0;
|
|
return 0;
|
|
@@ -477,11 +488,11 @@ public class RankStrategy4RegionMergeModelV562 extends RankStrategy4RegionMergeM
|
|
score += featureList.get(index) * weight;
|
|
score += featureList.get(index) * weight;
|
|
}
|
|
}
|
|
// 调整vov
|
|
// 调整vov
|
|
- if (score < 0.1) {
|
|
|
|
|
|
+ if (score < vov_thresh) {
|
|
score = 0;
|
|
score = 0;
|
|
} else {
|
|
} else {
|
|
- double term1 = 1 / (1 + Math.exp(-100 * (score - 0.123)));
|
|
|
|
- double term2 = 1 + Math.exp(-100 * (0.178 - 0.123));
|
|
|
|
|
|
+ double term1 = 1 / (1 + Math.exp(-1*beta_vov * (score - level50_vov)));
|
|
|
|
+ double term2 = 1 + Math.exp(-1*beta_vov * (level_95_vov - level50_vov));
|
|
score = term1 * term2;
|
|
score = term1 * term2;
|
|
}
|
|
}
|
|
return score;
|
|
return score;
|