# similarity 用于词语、短语、句子、词法分析、情感分析、语义分析等相关的相似度计算。 **similarity**是由一系列算法组成的Java版相似度计算工具包,目标是传播自然语言处理中相似度计算方法。**similarity**具备工具实用、性能高效、架构清晰、语料时新、可自定义的特点。 **similarity**提供下列功能: > * 词语相似度计算 * 词林编码法相似度 * 汉语语义法相似度 * 知网词语相似度 * 字面编辑距离法 > * 短语相似度计算 * 简单短语相似度 > * 句子相似度计算 * 词性和词序结合法 * 编辑距离算法 * Gregor编辑距离法 * 优化编辑距离法 > * 文本相似度计算 * 余弦相似度 * 编辑距离算法 * 欧几里得距离 * Jaccard相似性系数 * Jaro距离 * Jaro–Winkler距离 * 曼哈顿距离 * SimHash + 汉明距离 * Sørensen–Dice系数 > * 词法分析 * xmnlp中文分词 * 分词词性标注 * 词频统计 > * 知网义原 * 义原树 > * 情感分析 * 正面倾向程度 * 负面倾向程度 * 情感倾向性 > * 近似词 * word2vec 在提供丰富功能的同时,**similarity**内部模块坚持低耦合、模型坚持惰性加载、词典坚持明文发布,使用方便,帮助用户训练自己的语料。 ------ ## demo http://www.borntowin.cn/nlp ------ ## Todo 文本相似性度量 * [done]关键词匹配(TF-IDF、BM25) * []浅层语义匹配(WordEmbed隐语义模型,用word2vec或glove词向量直接累加构造的句向量) * []深度语义匹配模型(DSSM、CLSM、DeepMatch、MatchingFeatures、ARC-II、DeepMind,具体依次参考下面的Reference) 欢迎大家贡献代码及思路,完善本项目 ## Reference * [DSSM] Po-Sen Huang, et al., 2013, Learning Deep Structured Semantic Models for Web Search using Clickthrough Data * [CLSM] Yelong Shen, et al, 2014, A Latent Semantic Model with Convolutional-Pooling Structure for Information Retrieval * [DeepMatch] Zhengdong Lu & Hang Li, 2013, A Deep Architecture for Matching Short Texts * [MatchingFeatures] Zongcheng Ji, et al., 2014, An Information Retrieval Approach to Short Text Conversation * [ARC-II] Baotian Hu, et al., 2015, Convolutional Neural Network Architectures for Matching Natural Language Sentences * [DeepMind] Aliaksei Severyn, et al., 2015, Learning to Rank Short Text Pairs with Convolutional Deep Neural Networks ------ ## Usage ### word similarity ``` public static void main(String[] args) { String word1 = "教师"; String word2 = "教授"; double cilinSimilarityResult = Similarity.cilinSimilarity(word1, word2); double pinyinSimilarityResult = Similarity.pinyinSimilarity(word1, word2); double conceptSimilarityResult = Similarity.conceptSimilarity(word1, word2); double charBasedSimilarityResult = Similarity.charBasedSimilarity(word1, word2); System.out.println(word1 + " vs " + word2 + " 词林相似度值:" + cilinSimilarityResult); System.out.println(word1 + " vs " + word2 + " 拼音相似度值:" + pinyinSimilarityResult); System.out.println(word1 + " vs " + word2 + " 概念相似度值:" + conceptSimilarityResult); System.out.println(word1 + " vs " + word2 + " 字面相似度值:" + charBasedSimilarityResult); } ``` demo code position: test/java/org.xm/WordSimilarityDemo.java * result: ![](data/pic/word_sim.png) ### phrase similarity ``` public static void main(String[] args) { String phrase1 = "继续努力"; String phrase2 = "持续发展"; double result = Similarity.phraseSimilarity(phrase1, phrase2); System.out.println(phrase1 + " vs " + phrase2 + " 短语相似度值:" + result); } ``` demo code position: test/java/org.xm/PhraseSimilarityDemo.java * result: ![](data/pic/phrase_sim.png) ### sentence similarity ``` public static void main(String[] args) { String sentence1 = "中国人爱吃鱼"; String sentence2 = "湖北佬最喜吃鱼"; double morphoSimilarityResult = Similarity.morphoSimilarity(sentence1, sentence2); double editDistanceResult = Similarity.editDistanceSimilarity(sentence1, sentence2); double standEditDistanceResult = Similarity.standardEditDistanceSimilarity(sentence1,sentence2); double gregeorEditDistanceResult = Similarity.gregorEditDistanceSimilarity(sentence1,sentence2); System.out.println(sentence1 + " vs " + sentence2 + " 词形词序句子相似度值:" + morphoSimilarityResult); System.out.println(sentence1 + " vs " + sentence2 + " 优化的编辑距离句子相似度值:" + editDistanceResult); System.out.println(sentence1 + " vs " + sentence2 + " 标准编辑距离句子相似度值:" + standEditDistanceResult); System.out.println(sentence1 + " vs " + sentence2 + " gregeor编辑距离句子相似度值:" + gregeorEditDistanceResult); } ``` demo code position: test/java/org.xm/SentenceSimilarityDemo.java * result: ![](data/pic/sentence_sim.png) ### text similarity ``` @Test public void getSimilarityScore() throws Exception { String text1 = "我爱购物"; String text2 = "我爱读书"; String text3 = "他是黑客"; TextSimilarity similarity = new CosineSimilarity(); double score1pk2 = similarity.getSimilarity(text1, text2); double score1pk3 = similarity.getSimilarity(text1, text3); double score2pk2 = similarity.getSimilarity(text2, text2); double score2pk3 = similarity.getSimilarity(text2, text3); double score3pk3 = similarity.getSimilarity(text3, text3); System.out.println(text1 + " 和 " + text2 + " 的相似度分值:" + score1pk2); System.out.println(text1 + " 和 " + text3 + " 的相似度分值:" + score1pk3); System.out.println(text2 + " 和 " + text2 + " 的相似度分值:" + score2pk2); System.out.println(text2 + " 和 " + text3 + " 的相似度分值:" + score2pk3); System.out.println(text3 + " 和 " + text3 + " 的相似度分值:" + score3pk3); } ``` demo code position: test/java/org.xm/similarity/text/CosineSimilarityTest.java * result: ![](data/pic/cos_txt.png) ### word frequency statistics demo code position: test/java/org.xm/tokenizer/WordFreqStatisticsTest.java * result: ![](data/pic/freq.png) 分词及词性标注内置调用[HanLP](https://github.com/hankcs/HanLP),也可以使用我们NLPchina的[ansj_seg](https://github.com/NLPchina/ansj_seg)分词工具。 ### sentiment analysis based on words ``` @Test public void getTendency() throws Exception { HownetWordTendency hownet = new HownetWordTendency(); String word = "美好"; double sim = hownet.getTendency(word); System.out.println(word + ":" + sim); System.out.println("混蛋:" + hownet.getTendency("混蛋")); } ``` demo code position: test/java/org.xm/tendency.word/HownetWordTendencyTest.java * result: ![](data/pic/tendency.png) 本例是基于义原树的词语粒度情感极性分析,关于文本情感分析有[text-classifier](https://github.com/shibing624/text-classifier),利用深度神经网络模型、SVM分类算法实现的效果更好。 ### homoionym(use word2vec) ``` @Test public void testHomoionym() throws Exception { List result = Word2vec.getHomoionym(RAW_CORPUS_SPLIT_MODEL, "武功", 10); System.out.println("武功 近似词:" + result); } @Test public void testHomoionymName() throws Exception { String model = RAW_CORPUS_SPLIT_MODEL; List result = Word2vec.getHomoionym(model, "乔帮主", 10); System.out.println("乔帮主 近似词:" + result); List result2 = Word2vec.getHomoionym(model, "阿朱", 10); System.out.println("阿朱 近似词:" + result2); List result3 = Word2vec.getHomoionym(model, "少林寺", 10); System.out.println("少林寺 近似词:" + result3); } ``` demo code position: test/java/org.xm/word2vec/Word2vecTest.java * train: ![](data/pic/word2v.png) * result: ![](data/pic/word2v_ret.png) 训练词向量使用的是阿健实现的java版word2vec训练工具[Word2VEC_java](https://github.com/NLPchina/Word2VEC_java),训练语料是小说天龙八部,通过词向量实现得到近义词。 用户可以训练自定义语料,也可以用中文维基百科训练通用词向量。