inferv2.py 3.4 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697
  1. import os
  2. import sys
  3. import numpy as np
  4. import json
  5. from concurrent.futures import ThreadPoolExecutor
  6. from utils.oss_client import HangZhouOSSClient
  7. import utils.compress as compress
  8. from utils.my_hdfs_client import MyHDFSClient
  9. import paddle.inference as paddle_infer
  10. # Hadoop 安装目录和配置信息
  11. hadoop_home = "/app/env/hadoop-3.2.4"
  12. configs = {
  13. "fs.defaultFS": "hdfs://192.168.141.208:9000",
  14. "hadoop.job.ugi": ""
  15. }
  16. hdfs_client = MyHDFSClient(hadoop_home, configs)
  17. def download_and_extract_model(init_model_path, oss_client, oss_object_name):
  18. """下载并解压模型"""
  19. model_tar_path = "model.tar.gz"
  20. oss_client.get_object_to_file(oss_object_name, model_tar_path)
  21. compress.uncompress_tar(model_tar_path, init_model_path)
  22. assert os.path.exists(init_model_path)
  23. def create_paddle_predictor(model_file, params_file):
  24. """创建PaddlePaddle的predictor"""
  25. config = paddle_infer.Config(model_file, params_file)
  26. predictor = paddle_infer.create_predictor(config)
  27. return predictor
  28. def process_file(file_path, model_file, params_file):
  29. """处理单个文件"""
  30. predictor = create_paddle_predictor(model_file, params_file)
  31. ret, out = hdfs_client._run_cmd(f"text {file_path}")
  32. input_data = {}
  33. for line in out:
  34. sample_values = line.rstrip('\n').split('\t')
  35. vid, left_features_str = sample_values
  36. left_features = [float(x) for x in left_features_str.split(',')]
  37. input_data[vid] = left_features
  38. result = []
  39. for k, v in input_data.items():
  40. v2 = np.array([v], dtype=np.float32)
  41. input_handle = predictor.get_input_handle(predictor.get_input_names()[0])
  42. input_handle.copy_from_cpu(v2)
  43. predictor.run()
  44. output_handle = predictor.get_output_handle(predictor.get_output_names()[0])
  45. output_data = output_handle.copy_to_cpu()
  46. result.append(k + "\t" + str(output_data.tolist()[0]))
  47. return result
  48. def write_results(results, output_file):
  49. """将结果写入文件"""
  50. with open(output_file, 'w') as json_file:
  51. for s in results:
  52. json_file.write(s + "\n")
  53. def thread_task(name, file_list, model_file, params_file):
  54. """线程任务"""
  55. print(f"Thread {name}: starting file_list:{file_list}")
  56. results = []
  57. for file_path in file_list:
  58. results.extend(process_file(file_path, model_file, params_file))
  59. output_file = f"/app/data_{os.path.basename(file_path)}.json"
  60. write_results(results, output_file)
  61. print(f"Thread {name}: finishing")
  62. def main():
  63. init_model_path = "/app/output_model_dssm"
  64. client = HangZhouOSSClient("art-recommend")
  65. oss_object_name = "dyp/dssm.tar.gz"
  66. download_and_extract_model(init_model_path, client, oss_object_name)
  67. model_file = os.path.join(init_model_path, "dssm.pdmodel")
  68. params_file = os.path.join(init_model_path, "dssm.pdiparams")
  69. max_workers = 2
  70. split_file_list = [
  71. ['/dw/recommend/model/56_dssm_i2i_itempredData/20241206/part-00017.gz'],
  72. ['/dw/recommend/model/56_dssm_i2i_itempredData/20241206/part-00017.gz']
  73. ]
  74. future_list = []
  75. with ThreadPoolExecutor(max_workers=max_workers) as executor:
  76. for i, file_list in enumerate(split_file_list):
  77. future_list.append(executor.submit(thread_task, f"thread{i}", file_list, model_file, params_file))
  78. for future in future_list:
  79. future.result()
  80. print("Main program ending")
  81. if __name__ == "__main__":
  82. main()