static_ps_trainer.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340
  1. # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import print_function
  15. import os
  16. os.environ['FLAGS_enable_pir_api'] = '0'
  17. from utils.static_ps.reader_helper import get_reader, get_example_num, get_file_list, get_word_num
  18. from utils.static_ps.program_helper import get_model, get_strategy, set_dump_config
  19. from utils.static_ps.metric_helper import set_zero, get_global_auc
  20. from utils.static_ps.common_ps import YamlHelper, is_distributed_env
  21. import argparse
  22. import time
  23. import sys
  24. import paddle.distributed.fleet as fleet
  25. import paddle.distributed.fleet.base.role_maker as role_maker
  26. import paddle
  27. import warnings
  28. import logging
  29. import ast
  30. import numpy as np
  31. import struct
  32. from utils.utils_single import auc
  33. __dir__ = os.path.dirname(os.path.abspath(__file__))
  34. sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
  35. root_loger = logging.getLogger()
  36. for handler in root_loger.handlers[:]:
  37. root_loger.removeHandler(handler)
  38. logging.basicConfig(
  39. format='%(asctime)s - %(levelname)s - %(message)s', level=logging.INFO)
  40. logger = logging.getLogger(__name__)
  41. def parse_args():
  42. parser = argparse.ArgumentParser("PaddleRec train script")
  43. parser.add_argument("-o", "--opt", nargs='*', type=str)
  44. parser.add_argument(
  45. '-m',
  46. '--config_yaml',
  47. type=str,
  48. required=True,
  49. help='config file path')
  50. parser.add_argument(
  51. '-bf16',
  52. '--pure_bf16',
  53. type=ast.literal_eval,
  54. default=False,
  55. help="whether use bf16")
  56. args = parser.parse_args()
  57. args.abs_dir = os.path.dirname(os.path.abspath(args.config_yaml))
  58. yaml_helper = YamlHelper()
  59. config = yaml_helper.load_yaml(args.config_yaml)
  60. # modify config from command
  61. if args.opt:
  62. for parameter in args.opt:
  63. parameter = parameter.strip()
  64. key, value = parameter.split("=")
  65. if type(config.get(key)) is int:
  66. value = int(value)
  67. if type(config.get(key)) is float:
  68. value = float(value)
  69. if type(config.get(key)) is bool:
  70. value = (True if value.lower() == "true" else False)
  71. config[key] = value
  72. config["yaml_path"] = args.config_yaml
  73. config["config_abs_dir"] = args.abs_dir
  74. config["pure_bf16"] = args.pure_bf16
  75. yaml_helper.print_yaml(config)
  76. return config
  77. def bf16_to_fp32(val):
  78. return np.float32(struct.unpack('<f', struct.pack('<I', val << 16))[0])
  79. class Main(object):
  80. def __init__(self, config):
  81. self.metrics = {}
  82. self.config = config
  83. self.input_data = None
  84. self.reader = None
  85. self.exe = None
  86. self.train_result_dict = {}
  87. self.train_result_dict["speed"] = []
  88. self.train_result_dict["auc"] = []
  89. self.model = None
  90. self.pure_bf16 = self.config['pure_bf16']
  91. def run(self):
  92. logger.info("Begin 11111111")
  93. self.init_fleet_with_gloo()
  94. logger.info("Begin 22222222")
  95. self.network()
  96. if fleet.is_server():
  97. self.run_server()
  98. elif fleet.is_worker():
  99. self.run_worker()
  100. fleet.stop_worker()
  101. self.record_result()
  102. logger.info("Run Success, Exit.")
  103. def init_fleet_with_gloo(use_gloo=True):
  104. if use_gloo:
  105. os.environ["PADDLE_WITH_GLOO"] = "0"
  106. logger.info("Begin 11111111222222")
  107. role = role_maker.PaddleCloudRoleMaker(
  108. is_collective=False,
  109. init_gloo=False
  110. )
  111. logger.info("Begin 11111111333333")
  112. fleet.init(role)
  113. #logger.info("worker_index: %s", fleet.worker_index())
  114. #logger.info("is_first_worker: %s", fleet.is_first_worker())
  115. #logger.info("worker_num: %s", fleet.worker_num())
  116. #logger.info("is_distributed: %s", fleet.is_distributed())
  117. #logger.info("mode: %s", fleet.mode)
  118. else:
  119. fleet.init()
  120. def network(self):
  121. self.model = get_model(self.config)
  122. self.input_data = self.model.create_feeds()
  123. self.inference_feed_var = self.model.create_feeds(is_infer=True)
  124. self.init_reader()
  125. self.metrics = self.model.net(self.input_data)
  126. self.inference_target_var = self.model.inference_target_var
  127. logger.info("cpu_num: {}".format(os.getenv("CPU_NUM")))
  128. self.model.create_optimizer(get_strategy(self.config))
  129. def run_server(self):
  130. logger.info("Run Server Begin")
  131. fleet.init_server(config.get("runner.warmup_model_path"))
  132. fleet.run_server()
  133. def run_worker(self):
  134. logger.info("Run Worker Begin")
  135. use_cuda = int(config.get("runner.use_gpu"))
  136. use_auc = config.get("runner.use_auc", False)
  137. place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
  138. self.exe = paddle.static.Executor(place)
  139. with open("./{}_worker_main_program.prototxt".format(
  140. fleet.worker_index()), 'w+') as f:
  141. f.write(str(paddle.static.default_main_program()))
  142. with open("./{}_worker_startup_program.prototxt".format(
  143. fleet.worker_index()), 'w+') as f:
  144. f.write(str(paddle.static.default_startup_program()))
  145. self.exe.run(paddle.static.default_startup_program())
  146. if self.pure_bf16:
  147. self.model.optimizer.amp_init(self.exe.place)
  148. fleet.init_worker()
  149. save_model_path = self.config.get("runner.model_save_path")
  150. if save_model_path and (not os.path.exists(save_model_path)):
  151. os.makedirs(save_model_path)
  152. reader_type = self.config.get("runner.reader_type", "QueueDataset")
  153. epochs = int(self.config.get("runner.epochs"))
  154. sync_mode = self.config.get("runner.sync_mode")
  155. opt_info = paddle.static.default_main_program()._fleet_opt
  156. if use_auc is True:
  157. opt_info['stat_var_names'] = [
  158. self.model.stat_pos.name, self.model.stat_neg.name
  159. ]
  160. else:
  161. opt_info['stat_var_names'] = []
  162. if reader_type == "InmemoryDataset":
  163. self.reader.load_into_memory()
  164. for epoch in range(epochs):
  165. epoch_start_time = time.time()
  166. if sync_mode == "heter":
  167. self.heter_train_loop(epoch)
  168. elif reader_type == "QueueDataset":
  169. self.dataset_train_loop(epoch)
  170. elif reader_type == "InmemoryDataset":
  171. self.dataset_train_loop(epoch)
  172. epoch_time = time.time() - epoch_start_time
  173. epoch_speed = self.example_nums / epoch_time
  174. if use_auc is True:
  175. global_auc = get_global_auc(paddle.static.global_scope(),
  176. self.model.stat_pos.name,
  177. self.model.stat_neg.name)
  178. self.train_result_dict["auc"].append(global_auc)
  179. set_zero(self.model.stat_pos.name,
  180. paddle.static.global_scope())
  181. set_zero(self.model.stat_neg.name,
  182. paddle.static.global_scope())
  183. set_zero(self.model.batch_stat_pos.name,
  184. paddle.static.global_scope())
  185. set_zero(self.model.batch_stat_neg.name,
  186. paddle.static.global_scope())
  187. logger.info(
  188. "Epoch: {}, using time: {} second, ips: {} {}/sec. auc: {}".
  189. format(epoch, epoch_time, epoch_speed, self.count_method,
  190. global_auc))
  191. else:
  192. logger.info(
  193. "Epoch: {}, using time {} second, ips {} {}/sec.".format(
  194. epoch, epoch_time, epoch_speed, self.count_method))
  195. self.train_result_dict["speed"].append(epoch_speed)
  196. model_dir = "{}/{}".format(save_model_path, epoch)
  197. if is_distributed_env():
  198. fleet.save_inference_model(
  199. self.exe, model_dir,
  200. [feed.name for feed in self.inference_feed_var],
  201. self.inference_target_var)
  202. else:
  203. paddle.static.save_inference_model(
  204. model_dir,
  205. [feed.name for feed in self.inference_feed_var],
  206. [self.inference_target_var], self.exe)
  207. if reader_type == "InmemoryDataset":
  208. self.reader.release_memory()
  209. def init_reader(self):
  210. if fleet.is_server():
  211. return
  212. self.config["runner.reader_type"] = self.config.get(
  213. "runner.reader_type", "QueueDataset")
  214. self.reader, self.file_list = get_reader(self.input_data, config)
  215. self.example_nums = 0
  216. self.count_method = self.config.get("runner.example_count_method",
  217. "example")
  218. if self.count_method == "example":
  219. self.example_nums = get_example_num(self.file_list)
  220. elif self.count_method == "word":
  221. self.example_nums = get_word_num(self.file_list)
  222. else:
  223. raise ValueError(
  224. "Set static_benchmark.example_count_method for example / word for example count."
  225. )
  226. def dataset_train_loop(self, epoch):
  227. logger.info("Epoch: {}, Running Dataset Begin.".format(epoch))
  228. fetch_info = [
  229. "Epoch {} Var {}".format(epoch, var_name)
  230. for var_name in self.metrics
  231. ]
  232. fetch_vars = [var for _, var in self.metrics.items()]
  233. print_step = int(config.get("runner.print_interval"))
  234. debug = config.get("runner.dataset_debug", False)
  235. if config.get("runner.need_dump"):
  236. debug = True
  237. dump_fields_path = "{}/{}".format(
  238. config.get("runner.dump_fields_path"), epoch)
  239. set_dump_config(paddle.static.default_main_program(), {
  240. "dump_fields_path": dump_fields_path,
  241. "dump_fields": config.get("runner.dump_fields")
  242. })
  243. logger.info(paddle.static.default_main_program()._fleet_opt)
  244. logger.info("Epoch: {}, debug debug debug debug.".format(epoch))
  245. self.exe.train_from_dataset(
  246. program=paddle.static.default_main_program(),
  247. dataset=self.reader,
  248. fetch_list=fetch_vars,
  249. fetch_info=fetch_info,
  250. print_period=print_step,
  251. debug=debug)
  252. def heter_train_loop(self, epoch):
  253. logger.info(
  254. "Epoch: {}, Running Begin. Check running metrics at heter_log".
  255. format(epoch))
  256. reader_type = self.config.get("runner.reader_type")
  257. if reader_type == "QueueDataset":
  258. self.exe.train_from_dataset(
  259. program=paddle.static.default_main_program(),
  260. dataset=self.reader,
  261. debug=config.get("runner.dataset_debug"))
  262. elif reader_type == "DataLoader":
  263. batch_id = 0
  264. train_run_cost = 0.0
  265. total_examples = 0
  266. self.reader.start()
  267. while True:
  268. try:
  269. train_start = time.time()
  270. # --------------------------------------------------- #
  271. self.exe.run(program=paddle.static.default_main_program())
  272. # --------------------------------------------------- #
  273. train_run_cost += time.time() - train_start
  274. total_examples += self.config.get("runner.batch_size")
  275. batch_id += 1
  276. print_step = int(config.get("runner.print_period"))
  277. if batch_id % print_step == 0:
  278. profiler_string = ""
  279. profiler_string += "avg_batch_cost: {} sec, ".format(
  280. format((train_run_cost) / print_step, '.5f'))
  281. profiler_string += "avg_samples: {}, ".format(
  282. format(total_examples / print_step, '.5f'))
  283. profiler_string += "ips: {} {}/sec ".format(
  284. format(total_examples / (train_run_cost), '.5f'),
  285. self.count_method)
  286. logger.info("Epoch: {}, Batch: {}, {}".format(
  287. epoch, batch_id, profiler_string))
  288. train_run_cost = 0.0
  289. total_examples = 0
  290. except paddle.core.EOFException:
  291. self.reader.reset()
  292. break
  293. def record_result(self):
  294. logger.info("train_result_dict: {}".format(self.train_result_dict))
  295. with open("./train_result_dict.txt", 'w+') as f:
  296. f.write(str(self.train_result_dict))
  297. if __name__ == "__main__":
  298. paddle.enable_static()
  299. config = parse_args()
  300. os.environ["CPU_NUM"] = str(config.get("runner.thread_num"))
  301. benchmark_main = Main(config)
  302. benchmark_main.run()