123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import print_function
- import os
- os.environ['FLAGS_enable_pir_api'] = '0'
- import warnings
- import logging
- import paddle
- import sys
- __dir__ = os.path.dirname(os.path.abspath(__file__))
- #sys.path.append(__dir__)
- sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
- from utils.utils_single import load_yaml, load_static_model_class, get_abs_model, create_data_loader, reset_auc
- from utils.save_load import save_static_model, load_static_model, save_data
- import time
- import argparse
- logging.basicConfig(
- format='%(asctime)s - %(levelname)s - %(message)s', level=logging.INFO)
- logger = logging.getLogger(__name__)
- def parse_args():
- parser = argparse.ArgumentParser("PaddleRec train static script")
- parser.add_argument("-m", "--config_yaml", type=str)
- parser.add_argument("-o", "--opt", nargs='*', type=str)
- args = parser.parse_args()
- args.abs_dir = os.path.dirname(os.path.abspath(args.config_yaml))
- args.config_yaml = get_abs_model(args.config_yaml)
- return args
- def main(args):
- paddle.seed(12345)
- # load config
- config = load_yaml(args.config_yaml)
- config["config_abs_dir"] = args.abs_dir
- # modify config from command
- if args.opt:
- for parameter in args.opt:
- parameter = parameter.strip()
- key, value = parameter.split("=")
- if type(config.get(key)) is int:
- value = int(value)
- if type(config.get(key)) is float:
- value = float(value)
- if type(config.get(key)) is bool:
- value = (True if value.lower() == "true" else False)
- config[key] = value
- # load static model class
- static_model_class = load_static_model_class(config)
- input_data = static_model_class.create_feeds(is_infer=True)
- input_data_names = [data.name for data in input_data]
- fetch_vars = static_model_class.infer_net(input_data)
- logger.info("cpu_num: {}".format(os.getenv("CPU_NUM")))
- use_gpu = config.get("runner.use_gpu", True)
- use_xpu = config.get("runner.use_xpu", False)
- use_auc = config.get("runner.use_auc", False)
- use_visual = config.get("runner.use_visual", False)
- auc_num = config.get("runner.auc_num", 1)
- test_data_dir = config.get("runner.test_data_dir", None)
- print_interval = config.get("runner.print_interval", None)
- model_load_path = config.get("runner.infer_load_path", "model_output")
- start_epoch = config.get("runner.infer_start_epoch", 0)
- end_epoch = config.get("runner.infer_end_epoch", 10)
- batch_size = config.get("runner.infer_batch_size", None)
- use_save_data = config.get("runner.use_save_data", False)
- reader_type = config.get("runner.reader_type", "DataLoader")
- use_fleet = config.get("runner.use_fleet", False)
- os.environ["CPU_NUM"] = str(config.get("runner.thread_num", 1))
- logger.info("**************common.configs**********")
- logger.info(
- "use_gpu: {}, use_xpu: {}, use_visual: {}, infer_batch_size: {}, test_data_dir: {}, start_epoch: {}, end_epoch: {}, print_interval: {}, model_load_path: {}".
- format(use_gpu, use_xpu, use_visual, batch_size, test_data_dir,
- start_epoch, end_epoch, print_interval, model_load_path))
- logger.info("**************common.configs**********")
- if use_xpu:
- xpu_device = 'xpu:{0}'.format(os.getenv('FLAGS_selected_xpus', 0))
- place = paddle.set_device(xpu_device)
- else:
- place = paddle.set_device('gpu' if use_gpu else 'cpu')
- exe = paddle.static.Executor(place)
- # initialize
- exe.run(paddle.static.default_startup_program())
- if reader_type == 'DataLoader':
- test_dataloader = create_data_loader(
- config=config, place=place, mode="test")
- elif reader_type == "CustomizeDataLoader":
- test_dataloader = static_model_class.create_data_loader()
- # Create a log_visual object and store the data in the path
- if use_visual:
- from visualdl import LogWriter
- log_visual = LogWriter(args.abs_dir + "/visualDL_log/infer")
- step_num = 0
- for epoch_id in range(start_epoch, end_epoch):
- logger.info("load model epoch {}".format(epoch_id))
- model_path = os.path.join(model_load_path, str(epoch_id))
- load_static_model(
- paddle.static.default_main_program(),
- model_path,
- prefix='rec_static')
- epoch_begin = time.time()
- interval_begin = time.time()
- infer_reader_cost = 0.0
- infer_run_cost = 0.0
- reader_start = time.time()
- if use_auc:
- reset_auc(use_fleet, auc_num)
- #we will drop the last incomplete batch when dataset size is not divisible by the batch size
- assert any(test_dataloader(
- )), "test_dataloader's size is null, please ensure batch size < dataset size!"
- for batch_id, batch_data in enumerate(test_dataloader()):
- infer_reader_cost += time.time() - reader_start
- infer_start = time.time()
- fetch_batch_var = exe.run(
- program=paddle.static.default_main_program(),
- feed=dict(zip(input_data_names, batch_data)),
- fetch_list=[var for _, var in fetch_vars.items()])
- infer_run_cost += time.time() - infer_start
- if batch_id % print_interval == 0:
- metric_str = ""
- for var_idx, var_name in enumerate(fetch_vars):
- metric_str += "{}: {}, ".format(var_name,
- fetch_batch_var[var_idx])
- if use_visual:
- log_visual.add_scalar(
- tag="infer/" + var_name,
- step=step_num,
- value=fetch_batch_var[var_idx])
- logger.info(
- "epoch: {}, batch_id: {}, ".format(epoch_id,
- batch_id) + metric_str +
- "avg_reader_cost: {:.5f} sec, avg_batch_cost: {:.5f} sec, avg_samples: {:.5f}, ips: {:.2f} ins/s".
- format(infer_reader_cost / print_interval, (
- infer_reader_cost + infer_run_cost) / print_interval,
- batch_size, print_interval * batch_size / (
- time.time() + 0.0001 - interval_begin)))
- interval_begin = time.time()
- infer_reader_cost = 0.0
- infer_run_cost = 0.0
- reader_start = time.time()
- step_num = step_num + 1
- metric_str = ""
- for var_idx, var_name in enumerate(fetch_vars):
- metric_str += "{}: {}, ".format(var_name, fetch_batch_var[var_idx])
- logger.info("epoch: {} done, ".format(epoch_id) + metric_str +
- "epoch time: {:.2f} s".format(time.time() - epoch_begin))
- if use_save_data:
- save_data(fetch_batch_var, model_load_path)
- if __name__ == "__main__":
- paddle.enable_static()
- args = parse_args()
- main(args)
|