123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- os.environ['FLAGS_enable_pir_api'] = '0'
- import paddle
- import paddle.nn as nn
- import time
- import logging
- import sys
- import importlib
- __dir__ = os.path.dirname(os.path.abspath(__file__))
- #sys.path.append(__dir__)
- sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
- from utils.utils_single import load_yaml, load_dy_model_class, get_abs_model, create_data_loader
- from utils.save_load import load_model, save_model
- from paddle.io import DistributedBatchSampler, DataLoader
- import argparse
- logging.basicConfig(
- format='%(asctime)s - %(levelname)s - %(message)s', level=logging.INFO)
- logger = logging.getLogger(__name__)
- logger.setLevel(logging.INFO)
- def parse_args():
- parser = argparse.ArgumentParser(description='paddle-rec run')
- parser.add_argument("-m", "--config_yaml", type=str)
- parser.add_argument("-o", "--opt", nargs='*', type=str)
- args = parser.parse_args()
- args.abs_dir = os.path.dirname(os.path.abspath(args.config_yaml))
- args.config_yaml = get_abs_model(args.config_yaml)
- return args
- def main(args):
- # load config
- config = load_yaml(args.config_yaml)
- dy_model_class = load_dy_model_class(args.abs_dir)
- config["config_abs_dir"] = args.abs_dir
- # modify config from command
- if args.opt:
- for parameter in args.opt:
- parameter = parameter.strip()
- key, value = parameter.split("=")
- if type(config.get(key)) is int:
- value = int(value)
- if type(config.get(key)) is float:
- value = float(value)
- if type(config.get(key)) is bool:
- value = (True if value.lower() == "true" else False)
- config[key] = value
- # tools.vars
- use_gpu = config.get("runner.use_gpu", True)
- use_auc = config.get("runner.use_auc", False)
- use_npu = config.get("runner.use_npu", False)
- use_xpu = config.get("runner.use_xpu", False)
- use_visual = config.get("runner.use_visual", False)
- train_data_dir = config.get("runner.train_data_dir", None)
- epochs = config.get("runner.epochs", None)
- print_interval = config.get("runner.print_interval", None)
- train_batch_size = config.get("runner.train_batch_size", None)
- model_save_path = config.get("runner.model_save_path", "model_output")
- model_init_path = config.get("runner.model_init_path", None)
- use_fleet = config.get("runner.use_fleet", False)
- seed = config.get("runner.seed", 12345)
- paddle.seed(seed)
- logger.info("**************common.configs**********")
- logger.info(
- "use_gpu: {}, use_xpu: {}, use_npu: {}, use_visual: {}, train_batch_size: {}, train_data_dir: {}, epochs: {}, print_interval: {}, model_save_path: {}".
- format(use_gpu, use_xpu, use_npu, use_visual, train_batch_size,
- train_data_dir, epochs, print_interval, model_save_path))
- logger.info("**************common.configs**********")
- if use_xpu:
- xpu_device = 'xpu:{0}'.format(os.getenv('FLAGS_selected_xpus', 0))
- place = paddle.set_device(xpu_device)
- elif use_npu:
- npu_device = 'npu:{0}'.format(os.getenv('FLAGS_selected_npus', 0))
- place = paddle.set_device(npu_device)
- else:
- place = paddle.set_device('gpu' if use_gpu else 'cpu')
- dy_model = dy_model_class.create_model(config)
- # Create a log_visual object and store the data in the path
- if use_visual:
- from visualdl import LogWriter
- log_visual = LogWriter(args.abs_dir + "/visualDL_log/train")
- if model_init_path is not None:
- load_model(model_init_path, dy_model)
- # to do : add optimizer function
- optimizer = dy_model_class.create_optimizer(dy_model, config)
- # use fleet run collective
- if use_fleet:
- from paddle.distributed import fleet
- strategy = fleet.DistributedStrategy()
- fleet.init(is_collective=True, strategy=strategy)
- optimizer = fleet.distributed_optimizer(optimizer)
- dy_model = fleet.distributed_model(dy_model)
- logger.info("read data")
- train_dataloader = create_data_loader(config=config, place=place)
- last_epoch_id = config.get("last_epoch", -1)
- step_num = 0
- for epoch_id in range(last_epoch_id + 1, epochs):
- # set train mode
- dy_model.train()
- metric_list, metric_list_name = dy_model_class.create_metrics()
- #auc_metric = paddle.metric.Auc("ROC")
- epoch_begin = time.time()
- interval_begin = time.time()
- train_reader_cost = 0.0
- train_run_cost = 0.0
- total_samples = 0
- reader_start = time.time()
- #we will drop the last incomplete batch when dataset size is not divisible by the batch size
- assert any(train_dataloader(
- )), "train_dataloader is null, please ensure batch size < dataset size!"
- for batch_id, batch in enumerate(train_dataloader()):
- train_reader_cost += time.time() - reader_start
- optimizer.clear_grad()
- train_start = time.time()
- batch_size = len(batch[0])
- loss, metric_list, tensor_print_dict = dy_model_class.train_forward(
- dy_model, metric_list, batch, config)
- loss.backward()
- optimizer.step()
- train_run_cost += time.time() - train_start
- total_samples += batch_size
- if batch_id % print_interval == 0:
- metric_str = ""
- for metric_id in range(len(metric_list_name)):
- metric_str += (
- metric_list_name[metric_id] +
- ":{:.6f}, ".format(metric_list[metric_id].accumulate())
- )
- if use_visual:
- log_visual.add_scalar(
- tag="train/" + metric_list_name[metric_id],
- step=step_num,
- value=metric_list[metric_id].accumulate())
- tensor_print_str = ""
- if tensor_print_dict is not None:
- for var_name, var in tensor_print_dict.items():
- tensor_print_str += (
- "{}:".format(var_name) +
- str(var.numpy()).strip("[]") + ",")
- if use_visual:
- log_visual.add_scalar(
- tag="train/" + var_name,
- step=step_num,
- value=var.numpy())
- logger.info(
- "epoch: {}, batch_id: {}, ".format(
- epoch_id, batch_id) + metric_str + tensor_print_str +
- " avg_reader_cost: {:.5f} sec, avg_batch_cost: {:.5f} sec, avg_samples: {:.5f}, ips: {:.5f} ins/s".
- format(train_reader_cost / print_interval, (
- train_reader_cost + train_run_cost) / print_interval,
- total_samples / print_interval, total_samples / (
- train_reader_cost + train_run_cost + 0.0001)))
- train_reader_cost = 0.0
- train_run_cost = 0.0
- total_samples = 0
- reader_start = time.time()
- step_num = step_num + 1
- metric_str = ""
- for metric_id in range(len(metric_list_name)):
- metric_str += (
- metric_list_name[metric_id] +
- ": {:.6f},".format(metric_list[metric_id].accumulate()))
- if use_auc:
- metric_list[metric_id].reset()
- tensor_print_str = ""
- if tensor_print_dict is not None:
- for var_name, var in tensor_print_dict.items():
- tensor_print_str += (
- "{}:".format(var_name) + str(var.numpy()).strip("[]") + ","
- )
- logger.info("epoch: {} done, ".format(epoch_id) + metric_str +
- tensor_print_str + " epoch time: {:.2f} s".format(
- time.time() - epoch_begin))
- if use_fleet:
- trainer_id = paddle.distributed.get_rank()
- if trainer_id == 0:
- save_model(
- dy_model,
- optimizer,
- model_save_path,
- epoch_id,
- prefix='rec')
- else:
- save_model(
- dy_model, optimizer, model_save_path, epoch_id, prefix='rec')
- if __name__ == '__main__':
- args = parse_args()
- main(args)
|