123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- os.environ['FLAGS_enable_pir_api'] = '0'
- import paddle
- import paddle.nn as nn
- import time
- import logging
- import sys
- import importlib
- __dir__ = os.path.dirname(os.path.abspath(__file__))
- #sys.path.append(__dir__)
- sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
- from utils.utils_single import load_yaml, load_dy_model_class, get_abs_model, create_data_loader
- from utils.save_load import load_model, save_model, save_jit_model
- from paddle.io import DistributedBatchSampler, DataLoader
- import argparse
- logging.basicConfig(
- format='%(asctime)s - %(levelname)s - %(message)s', level=logging.INFO)
- logger = logging.getLogger(__name__)
- def parse_args():
- parser = argparse.ArgumentParser(description='paddle-rec run')
- parser.add_argument("-m", "--config_yaml", type=str)
- parser.add_argument("-o", "--opt", nargs='*', type=str)
- args = parser.parse_args()
- args.abs_dir = os.path.dirname(os.path.abspath(args.config_yaml))
- args.config_yaml = get_abs_model(args.config_yaml)
- return args
- def main(args):
- paddle.seed(12345)
- # load config
- config = load_yaml(args.config_yaml)
- dy_model_class = load_dy_model_class(args.abs_dir)
- config["config_abs_dir"] = args.abs_dir
- # modify config from command
- if args.opt:
- for parameter in args.opt:
- parameter = parameter.strip()
- key, value = parameter.split("=")
- if type(config.get(key)) is int:
- value = int(value)
- if type(config.get(key)) is bool:
- value = (True if value.lower() == "true" else False)
- config[key] = value
- # tools.vars
- use_gpu = config.get("runner.use_gpu", True)
- train_data_dir = config.get("runner.train_data_dir", None)
- epochs = config.get("runner.epochs", None)
- print_interval = config.get("runner.print_interval", None)
- model_save_path = config.get("runner.model_save_path", "model_output")
- model_init_path = config.get("runner.model_init_path", None)
- end_epoch = config.get("runner.infer_end_epoch", 0)
- CE = config.get("runner.CE", False)
- logger.info("**************common.configs**********")
- logger.info(
- "use_gpu: {}, train_data_dir: {}, epochs: {}, print_interval: {}, model_save_path: {}".
- format(use_gpu, train_data_dir, epochs, print_interval,
- model_save_path))
- logger.info("**************common.configs**********")
- place = paddle.set_device('gpu' if use_gpu else 'cpu')
- dy_model = dy_model_class.create_model(config)
- if not CE:
- model_save_path = os.path.join(model_save_path, str(end_epoch - 1))
- load_model(model_init_path, dy_model)
- # example dnn model forward
- dy_model = paddle.jit.to_static(
- dy_model,
- input_spec=[[
- paddle.static.InputSpec(
- shape=[None, 1], dtype='int64') for jj in range(26)
- ], paddle.static.InputSpec(
- shape=[None, 13], dtype='float32')])
- save_jit_model(dy_model, model_save_path, prefix='tostatic')
- if __name__ == '__main__':
- args = parse_args()
- main(args)
|