static_ps_infer_v2.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324
  1. # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import print_function
  15. import os
  16. os.environ['FLAGS_enable_pir_api'] = '0'
  17. from utils.static_ps.reader_helper import get_infer_reader
  18. from utils.static_ps.program_helper import get_model, get_strategy, set_dump_config
  19. from utils.static_ps.metric_helper import set_zero, get_global_auc
  20. from utils.static_ps.common_ps import YamlHelper, is_distributed_env
  21. import argparse
  22. import time
  23. import sys
  24. import paddle.distributed.fleet as fleet
  25. import paddle.distributed.fleet.base.role_maker as role_maker
  26. import paddle
  27. import warnings
  28. import logging
  29. import ast
  30. import numpy as np
  31. import struct
  32. from utils.utils_single import auc
  33. from utils.oss_client import HangZhouOSSClient
  34. import utils.compress as compress
  35. __dir__ = os.path.dirname(os.path.abspath(__file__))
  36. sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
  37. logging.basicConfig(
  38. format='%(asctime)s - %(levelname)s - %(message)s', level=logging.INFO)
  39. logger = logging.getLogger(__name__)
  40. def parse_args():
  41. parser = argparse.ArgumentParser("PaddleRec train script")
  42. parser.add_argument("-o", "--opt", nargs='*', type=str)
  43. parser.add_argument(
  44. '-m',
  45. '--config_yaml',
  46. type=str,
  47. required=True,
  48. help='config file path')
  49. parser.add_argument(
  50. '-bf16',
  51. '--pure_bf16',
  52. type=ast.literal_eval,
  53. default=False,
  54. help="whether use bf16")
  55. args = parser.parse_args()
  56. args.abs_dir = os.path.dirname(os.path.abspath(args.config_yaml))
  57. yaml_helper = YamlHelper()
  58. config = yaml_helper.load_yaml(args.config_yaml)
  59. # modify config from command
  60. if args.opt:
  61. for parameter in args.opt:
  62. parameter = parameter.strip()
  63. key, value = parameter.split("=")
  64. if type(config.get(key)) is int:
  65. value = int(value)
  66. if type(config.get(key)) is float:
  67. value = float(value)
  68. if type(config.get(key)) is bool:
  69. value = (True if value.lower() == "true" else False)
  70. config[key] = value
  71. config["yaml_path"] = args.config_yaml
  72. config["config_abs_dir"] = args.abs_dir
  73. config["pure_bf16"] = args.pure_bf16
  74. yaml_helper.print_yaml(config)
  75. return config
  76. def bf16_to_fp32(val):
  77. return np.float32(struct.unpack('<f', struct.pack('<I', val << 16))[0])
  78. class Main(object):
  79. def __init__(self, config):
  80. self.metrics = {}
  81. self.config = config
  82. self.input_data = None
  83. self.reader = None
  84. self.exe = None
  85. self.train_result_dict = {}
  86. self.train_result_dict["speed"] = []
  87. self.train_result_dict["auc"] = []
  88. self.model = None
  89. self.pure_bf16 = self.config['pure_bf16']
  90. def run(self):
  91. self.init_fleet_with_gloo()
  92. self.network()
  93. if fleet.is_server():
  94. self.run_server()
  95. elif fleet.is_worker():
  96. self.run_worker()
  97. fleet.stop_worker()
  98. self.record_result()
  99. logger.info("Run Success, Exit.")
  100. def init_fleet_with_gloo(use_gloo=True):
  101. if use_gloo:
  102. os.environ["PADDLE_WITH_GLOO"] = "0"
  103. role = role_maker.PaddleCloudRoleMaker(
  104. is_collective=False,
  105. init_gloo=False
  106. )
  107. fleet.init(role)
  108. else:
  109. fleet.init()
  110. def network(self):
  111. self.model = get_model(self.config)
  112. self.input_data = self.model.create_feeds()
  113. self.inference_feed_var = self.model.create_feeds()
  114. self.init_reader()
  115. self.metrics = self.model.net(self.input_data)
  116. self.inference_target_var = self.model.inference_target_var
  117. logger.info("cpu_num: {}".format(os.getenv("CPU_NUM")))
  118. self.model.create_optimizer(get_strategy(self.config))
  119. def run_server(self):
  120. logger.info("Run Server Begin")
  121. fleet.init_server(config.get("runner.warmup_model_path"))
  122. fleet.run_server()
  123. def run_worker(self):
  124. logger.info("Run Worker Begin")
  125. use_cuda = int(config.get("runner.use_gpu"))
  126. use_auc = config.get("runner.use_auc", False)
  127. place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
  128. self.exe = paddle.static.Executor(place)
  129. with open("./{}_worker_main_program.prototxt".format(
  130. fleet.worker_index()), 'w+') as f:
  131. f.write(str(paddle.static.default_main_program()))
  132. with open("./{}_worker_startup_program.prototxt".format(
  133. fleet.worker_index()), 'w+') as f:
  134. f.write(str(paddle.static.default_startup_program()))
  135. self.exe.run(paddle.static.default_startup_program())
  136. if self.pure_bf16:
  137. self.model.optimizer.amp_init(self.exe.place)
  138. fleet.init_worker()
  139. init_model_path = config.get("runner.infer_load_path")
  140. model_mode = config.get("runner.model_mode", 0)
  141. client = HangZhouOSSClient("art-recommend")
  142. client.get_object_to_file("dyp/test.tar.gz", "test.tar.gz")
  143. assert os.path.exists(data_path)
  144. compress.uncompress_tar("test.tar.gz", init_model_path)
  145. #if fleet.is_first_worker():
  146. #fleet.load_inference_model(init_model_path, mode=int(model_mode))
  147. #fleet.barrier_worker()
  148. save_model_path = self.config.get("runner.model_save_path")
  149. if save_model_path and (not os.path.exists(save_model_path)):
  150. os.makedirs(save_model_path)
  151. reader_type = self.config.get("runner.reader_type", "QueueDataset")
  152. epochs = int(self.config.get("runner.epochs"))
  153. sync_mode = self.config.get("runner.sync_mode")
  154. opt_info = paddle.static.default_main_program()._fleet_opt
  155. if use_auc is True:
  156. opt_info['stat_var_names'] = [
  157. self.model.stat_pos.name, self.model.stat_neg.name
  158. ]
  159. else:
  160. opt_info['stat_var_names'] = []
  161. if reader_type == "InmemoryDataset":
  162. self.reader.load_into_memory()
  163. for epoch in range(epochs):
  164. fleet.load_inference_model(
  165. os.path.join(init_model_path, str(epoch)),
  166. mode=int(model_mode))
  167. epoch_start_time = time.time()
  168. if sync_mode == "heter":
  169. self.heter_train_loop(epoch)
  170. elif reader_type == "QueueDataset":
  171. self.dataset_train_loop(epoch)
  172. elif reader_type == "InmemoryDataset":
  173. self.dataset_train_loop(epoch)
  174. epoch_time = time.time() - epoch_start_time
  175. if use_auc is True:
  176. global_auc = get_global_auc(paddle.static.global_scope(),
  177. self.model.stat_pos.name,
  178. self.model.stat_neg.name)
  179. self.train_result_dict["auc"].append(global_auc)
  180. set_zero(self.model.stat_pos.name,
  181. paddle.static.global_scope())
  182. set_zero(self.model.stat_neg.name,
  183. paddle.static.global_scope())
  184. set_zero(self.model.batch_stat_pos.name,
  185. paddle.static.global_scope())
  186. set_zero(self.model.batch_stat_neg.name,
  187. paddle.static.global_scope())
  188. logger.info(
  189. "Epoch: {}, using time: {} second, ips: {}/sec. auc: {}".
  190. format(epoch, epoch_time, self.count_method,
  191. global_auc))
  192. else:
  193. logger.info(
  194. "Epoch: {}, using time {} second, ips {}/sec.".format(
  195. epoch, epoch_time, self.count_method))
  196. model_dir = "{}/{}".format(save_model_path, epoch)
  197. if reader_type == "InmemoryDataset":
  198. self.reader.release_memory()
  199. def init_reader(self):
  200. if fleet.is_server():
  201. return
  202. self.config["runner.reader_type"] = self.config.get(
  203. "runner.reader_type", "QueueDataset")
  204. self.reader, self.file_list = get_infer_reader(self.input_data, config)
  205. self.example_nums = 0
  206. self.count_method = self.config.get("runner.example_count_method",
  207. "example")
  208. def dataset_train_loop(self, epoch):
  209. logger.info("Epoch: {}, Running Dataset Begin.".format(epoch))
  210. fetch_info = [
  211. "Epoch {} Var {}".format(epoch, var_name)
  212. for var_name in self.metrics
  213. ]
  214. fetch_vars = [var for _, var in self.metrics.items()]
  215. print_step = int(config.get("runner.print_interval"))
  216. debug = config.get("runner.dataset_debug", False)
  217. if config.get("runner.need_dump"):
  218. debug = True
  219. dump_fields_path = "{}/{}".format(
  220. config.get("runner.dump_fields_path"), epoch)
  221. set_dump_config(paddle.static.default_main_program(), {
  222. "dump_fields_path": dump_fields_path,
  223. "dump_fields": config.get("runner.dump_fields")
  224. })
  225. print(paddle.static.default_main_program()._fleet_opt)
  226. self.exe.infer_from_dataset(
  227. program=paddle.static.default_main_program(),
  228. dataset=self.reader,
  229. fetch_list=fetch_vars,
  230. fetch_info=fetch_info,
  231. print_period=print_step,
  232. debug=debug)
  233. def heter_train_loop(self, epoch):
  234. logger.info(
  235. "Epoch: {}, Running Begin. Check running metrics at heter_log".
  236. format(epoch))
  237. reader_type = self.config.get("runner.reader_type")
  238. if reader_type == "QueueDataset":
  239. self.exe.infer_from_dataset(
  240. program=paddle.static.default_main_program(),
  241. dataset=self.reader,
  242. debug=config.get("runner.dataset_debug"))
  243. elif reader_type == "DataLoader":
  244. batch_id = 0
  245. train_run_cost = 0.0
  246. total_examples = 0
  247. self.reader.start()
  248. while True:
  249. try:
  250. train_start = time.time()
  251. # --------------------------------------------------- #
  252. self.exe.run(program=paddle.static.default_main_program())
  253. # --------------------------------------------------- #
  254. train_run_cost += time.time() - train_start
  255. total_examples += self.config.get("runner.batch_size")
  256. batch_id += 1
  257. print_step = int(config.get("runner.print_period"))
  258. if batch_id % print_step == 0:
  259. profiler_string = ""
  260. profiler_string += "avg_batch_cost: {} sec, ".format(
  261. format((train_run_cost) / print_step, '.5f'))
  262. profiler_string += "avg_samples: {}, ".format(
  263. format(total_examples / print_step, '.5f'))
  264. profiler_string += "ips: {} {}/sec ".format(
  265. format(total_examples / (train_run_cost), '.5f'),
  266. self.count_method)
  267. logger.info("Epoch: {}, Batch: {}, {}".format(
  268. epoch, batch_id, profiler_string))
  269. train_run_cost = 0.0
  270. total_examples = 0
  271. except paddle.core.EOFException:
  272. self.reader.reset()
  273. break
  274. def record_result(self):
  275. logger.info("train_result_dict: {}".format(self.train_result_dict))
  276. with open("./train_result_dict.txt", 'w+') as f:
  277. f.write(str(self.train_result_dict))
  278. if __name__ == "__main__":
  279. paddle.enable_static()
  280. config = parse_args()
  281. os.environ["CPU_NUM"] = str(config.get("runner.thread_num"))
  282. benchmark_main = Main(config)
  283. benchmark_main.run()