static_ps_trainer_v2.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344
  1. # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import print_function
  15. import os
  16. os.environ['FLAGS_enable_pir_api'] = '0'
  17. from utils.static_ps.reader_helper_hdfs import get_reader
  18. from utils.static_ps.program_helper import get_model, get_strategy, set_dump_config
  19. from utils.static_ps.metric_helper import set_zero, get_global_auc
  20. from utils.static_ps.common_ps import YamlHelper, is_distributed_env
  21. import argparse
  22. import time
  23. import sys
  24. import paddle.distributed.fleet as fleet
  25. import paddle.distributed.fleet.base.role_maker as role_maker
  26. import paddle
  27. import warnings
  28. import logging
  29. import ast
  30. import numpy as np
  31. import struct
  32. from utils.utils_single import auc
  33. from utils.oss_client import HangZhouOSSClient
  34. import utils.compress as compress
  35. __dir__ = os.path.dirname(os.path.abspath(__file__))
  36. sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
  37. root_loger = logging.getLogger()
  38. for handler in root_loger.handlers[:]:
  39. root_loger.removeHandler(handler)
  40. logging.basicConfig(
  41. format='%(asctime)s - %(levelname)s - %(message)s', level=logging.INFO)
  42. logger = logging.getLogger(__name__)
  43. def parse_args():
  44. parser = argparse.ArgumentParser("PaddleRec train script")
  45. parser.add_argument("-o", "--opt", nargs='*', type=str)
  46. parser.add_argument(
  47. '-m',
  48. '--config_yaml',
  49. type=str,
  50. required=True,
  51. help='config file path')
  52. parser.add_argument(
  53. '-bf16',
  54. '--pure_bf16',
  55. type=ast.literal_eval,
  56. default=False,
  57. help="whether use bf16")
  58. args = parser.parse_args()
  59. args.abs_dir = os.path.dirname(os.path.abspath(args.config_yaml))
  60. yaml_helper = YamlHelper()
  61. config = yaml_helper.load_yaml(args.config_yaml)
  62. # modify config from command
  63. if args.opt:
  64. for parameter in args.opt:
  65. parameter = parameter.strip()
  66. key, value = parameter.split("=")
  67. if type(config.get(key)) is int:
  68. value = int(value)
  69. if type(config.get(key)) is float:
  70. value = float(value)
  71. if type(config.get(key)) is bool:
  72. value = (True if value.lower() == "true" else False)
  73. config[key] = value
  74. config["yaml_path"] = args.config_yaml
  75. config["config_abs_dir"] = args.abs_dir
  76. config["pure_bf16"] = args.pure_bf16
  77. yaml_helper.print_yaml(config)
  78. return config
  79. def bf16_to_fp32(val):
  80. return np.float32(struct.unpack('<f', struct.pack('<I', val << 16))[0])
  81. class Main(object):
  82. def __init__(self, config):
  83. self.metrics = {}
  84. self.config = config
  85. self.input_data = None
  86. self.reader = None
  87. self.exe = None
  88. self.train_result_dict = {}
  89. self.train_result_dict["speed"] = []
  90. self.train_result_dict["auc"] = []
  91. self.model = None
  92. self.pure_bf16 = self.config['pure_bf16']
  93. def run(self):
  94. self.init_fleet_with_gloo()
  95. self.network()
  96. if fleet.is_server():
  97. self.run_server()
  98. elif fleet.is_worker():
  99. self.run_worker()
  100. fleet.stop_worker()
  101. self.record_result()
  102. logger.info("Run Success, Exit.")
  103. def init_fleet_with_gloo(use_gloo=True):
  104. fleet_config = {
  105. "max_body_size": 256 * 1024 * 1024, # 设置为256MB
  106. }
  107. if use_gloo:
  108. os.environ["PADDLE_WITH_GLOO"] = "0"
  109. role = role_maker.PaddleCloudRoleMaker(
  110. is_collective=False,
  111. init_gloo=False
  112. )
  113. fleet.init(role)
  114. #logger.info("worker_index: %s", fleet.worker_index())
  115. #logger.info("is_first_worker: %s", fleet.is_first_worker())
  116. #logger.info("worker_num: %s", fleet.worker_num())
  117. #logger.info("is_distributed: %s", fleet.is_distributed())
  118. #logger.info("mode: %s", fleet.mode)
  119. else:
  120. # 在Fleet初始化配置中添加以下参数
  121. fleet.init()
  122. #fleet.set_fleet_desc(fleet_config)
  123. def network(self):
  124. self.model = get_model(self.config)
  125. self.input_data = self.model.create_feeds()
  126. self.inference_feed_var = self.model.create_feeds(is_infer=True)
  127. self.init_reader()
  128. self.metrics = self.model.net(self.input_data)
  129. self.inference_target_var = self.model.inference_target_var
  130. logger.info("cpu_num: {}".format(os.getenv("CPU_NUM")))
  131. self.model.create_optimizer(get_strategy(self.config))
  132. def run_server(self):
  133. logger.info("Run Server Begin")
  134. fleet.init_server(config.get("runner.warmup_model_path"))
  135. fleet.run_server()
  136. def run_worker(self):
  137. logger.info("Run Worker Begin")
  138. use_cuda = int(config.get("runner.use_gpu"))
  139. use_auc = config.get("runner.use_auc", False)
  140. place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
  141. self.exe = paddle.static.Executor(place)
  142. with open("./{}_worker_main_program.prototxt".format(
  143. fleet.worker_index()), 'w+') as f:
  144. f.write(str(paddle.static.default_main_program()))
  145. with open("./{}_worker_startup_program.prototxt".format(
  146. fleet.worker_index()), 'w+') as f:
  147. f.write(str(paddle.static.default_startup_program()))
  148. self.exe.run(paddle.static.default_startup_program())
  149. if self.pure_bf16:
  150. self.model.optimizer.amp_init(self.exe.place)
  151. fleet.init_worker()
  152. save_model_path = self.config.get("runner.model_save_path")
  153. if save_model_path and (not os.path.exists(save_model_path)):
  154. os.makedirs(save_model_path)
  155. reader_type = self.config.get("runner.reader_type", "QueueDataset")
  156. epochs = int(self.config.get("runner.epochs"))
  157. sync_mode = self.config.get("runner.sync_mode")
  158. opt_info = paddle.static.default_main_program()._fleet_opt
  159. if use_auc is True:
  160. opt_info['stat_var_names'] = [
  161. self.model.stat_pos.name, self.model.stat_neg.name
  162. ]
  163. else:
  164. opt_info['stat_var_names'] = []
  165. if reader_type == "InmemoryDataset":
  166. self.reader.load_into_memory()
  167. for epoch in range(epochs):
  168. epoch_start_time = time.time()
  169. if sync_mode == "heter":
  170. self.heter_train_loop(epoch)
  171. elif reader_type == "QueueDataset":
  172. self.dataset_train_loop(epoch)
  173. elif reader_type == "InmemoryDataset":
  174. self.dataset_train_loop(epoch)
  175. epoch_time = time.time() - epoch_start_time
  176. if use_auc is True:
  177. global_auc = get_global_auc(paddle.static.global_scope(),
  178. self.model.stat_pos.name,
  179. self.model.stat_neg.name)
  180. self.train_result_dict["auc"].append(global_auc)
  181. set_zero(self.model.stat_pos.name,
  182. paddle.static.global_scope())
  183. set_zero(self.model.stat_neg.name,
  184. paddle.static.global_scope())
  185. set_zero(self.model.batch_stat_pos.name,
  186. paddle.static.global_scope())
  187. set_zero(self.model.batch_stat_neg.name,
  188. paddle.static.global_scope())
  189. logger.info(
  190. "Epoch: {}, using time: {} second, ips: {}/sec. auc: {}".
  191. format(epoch, epoch_time, self.count_method,
  192. global_auc))
  193. else:
  194. logger.info(
  195. "Epoch: {}, using time {} second, ips {}/sec.".format(
  196. epoch, epoch_time, self.count_method))
  197. model_dir = "{}/{}".format(save_model_path, epoch)
  198. if is_distributed_env():
  199. fleet.save_inference_model(
  200. self.exe, model_dir,
  201. [feed.name for feed in self.inference_feed_var],
  202. self.inference_target_var)
  203. else:
  204. paddle.static.save_inference_model(
  205. model_dir,
  206. [feed.name for feed in self.inference_feed_var],
  207. [self.inference_target_var], self.exe)
  208. compress.compress_tar(model_dir, "test")
  209. client = HangZhouOSSClient("art-recommend")
  210. client.put_object_from_file("dyp/test.tar.gz", "test.tar.gz")
  211. if reader_type == "InmemoryDataset":
  212. self.reader.release_memory()
  213. def init_reader(self):
  214. if fleet.is_server():
  215. return
  216. self.config["runner.reader_type"] = self.config.get(
  217. "runner.reader_type", "QueueDataset")
  218. self.reader, self.file_list = get_reader(self.input_data, config)
  219. self.example_nums = 0
  220. self.count_method = self.config.get("runner.example_count_method",
  221. "example")
  222. def dataset_train_loop(self, epoch):
  223. logger.info("Epoch: {}, Running Dataset Begin.".format(epoch))
  224. fetch_info = [
  225. "Epoch {} Var {}".format(epoch, var_name)
  226. for var_name in self.metrics
  227. ]
  228. fetch_vars = [var for _, var in self.metrics.items()]
  229. print_step = int(config.get("runner.print_interval"))
  230. debug = config.get("runner.dataset_debug", False)
  231. if config.get("runner.need_dump"):
  232. debug = True
  233. dump_fields_path = "{}/{}".format(
  234. config.get("runner.dump_fields_path"), epoch)
  235. set_dump_config(paddle.static.default_main_program(), {
  236. "dump_fields_path": dump_fields_path,
  237. "dump_fields": config.get("runner.dump_fields")
  238. })
  239. logger.info(paddle.static.default_main_program()._fleet_opt)
  240. self.exe.train_from_dataset(
  241. program=paddle.static.default_main_program(),
  242. dataset=self.reader,
  243. fetch_list=fetch_vars,
  244. fetch_info=fetch_info,
  245. print_period=print_step,
  246. debug=debug)
  247. def heter_train_loop(self, epoch):
  248. logger.info(
  249. "Epoch: {}, Running Begin. Check running metrics at heter_log".
  250. format(epoch))
  251. reader_type = self.config.get("runner.reader_type")
  252. if reader_type == "QueueDataset":
  253. self.exe.train_from_dataset(
  254. program=paddle.static.default_main_program(),
  255. dataset=self.reader,
  256. debug=config.get("runner.dataset_debug"))
  257. elif reader_type == "DataLoader":
  258. batch_id = 0
  259. train_run_cost = 0.0
  260. total_examples = 0
  261. self.reader.start()
  262. while True:
  263. try:
  264. train_start = time.time()
  265. # --------------------------------------------------- #
  266. self.exe.run(program=paddle.static.default_main_program())
  267. # --------------------------------------------------- #
  268. train_run_cost += time.time() - train_start
  269. total_examples += self.config.get("runner.batch_size")
  270. batch_id += 1
  271. print_step = int(config.get("runner.print_period"))
  272. if batch_id % print_step == 0:
  273. profiler_string = ""
  274. profiler_string += "avg_batch_cost: {} sec, ".format(
  275. format((train_run_cost) / print_step, '.5f'))
  276. profiler_string += "avg_samples: {}, ".format(
  277. format(total_examples / print_step, '.5f'))
  278. profiler_string += "ips: {} {}/sec ".format(
  279. format(total_examples / (train_run_cost), '.5f'),
  280. self.count_method)
  281. logger.info("Epoch: {}, Batch: {}, {}".format(
  282. epoch, batch_id, profiler_string))
  283. train_run_cost = 0.0
  284. total_examples = 0
  285. except paddle.core.EOFException:
  286. self.reader.reset()
  287. break
  288. def record_result(self):
  289. logger.info("train_result_dict: {}".format(self.train_result_dict))
  290. with open("./train_result_dict.txt", 'w+') as f:
  291. f.write(str(self.train_result_dict))
  292. if __name__ == "__main__":
  293. paddle.enable_static()
  294. paddle.base.framework._global_flags()['FLAGS_max_body_size'] = 2147483647
  295. print('global_flags: ' + paddle.base.framework._global_flags()['FLAGS_max_body_size'])
  296. config = parse_args()
  297. os.environ["CPU_NUM"] = str(config.get("runner.thread_num"))
  298. benchmark_main = Main(config)
  299. benchmark_main.run()