static_model.py 3.2 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485
  1. # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import math
  15. import paddle
  16. from net import DSSMLayer
  17. class StaticModel():
  18. def __init__(self, config):
  19. self.cost = None
  20. self.config = config
  21. self._init_hyper_parameters()
  22. def _init_hyper_parameters(self):
  23. self.trigram_d = self.config.get("hyper_parameters.trigram_d")
  24. self.neg_num = self.config.get("hyper_parameters.neg_num")
  25. self.hidden_layers = self.config.get("hyper_parameters.fc_sizes")
  26. self.hidden_acts = self.config.get("hyper_parameters.fc_acts")
  27. self.learning_rate = self.config.get("hyper_parameters.learning_rate")
  28. self.slice_end = self.config.get("hyper_parameters.slice_end")
  29. self.learning_rate = self.config.get(
  30. "hyper_parameters.optimizer.learning_rate")
  31. def create_feeds(self, is_infer=False):
  32. query = paddle.static.data(
  33. name="query", shape=[-1, self.trigram_d], dtype='float32')
  34. self.prune_feed_vars = [query]
  35. doc_pos = paddle.static.data(
  36. name="doc_pos", shape=[-1, self.trigram_d], dtype='float32')
  37. if is_infer:
  38. return [query, doc_pos]
  39. doc_negs = [
  40. paddle.static.data(
  41. name="doc_neg_" + str(i),
  42. shape=[-1, self.trigram_d],
  43. dtype="float32") for i in range(self.neg_num)
  44. ]
  45. feeds_list = [query, doc_pos] + doc_negs
  46. return feeds_list
  47. def net(self, input, is_infer=False):
  48. dssm_model = DSSMLayer(self.trigram_d, self.neg_num, self.slice_end,
  49. self.hidden_layers, self.hidden_acts)
  50. R_Q_D_p, hit_prob = dssm_model.forward(input, is_infer)
  51. self.inference_target_var = R_Q_D_p
  52. self.prune_target_var = dssm_model.query_fc
  53. self.train_dump_fields = [dssm_model.query_fc, R_Q_D_p]
  54. self.train_dump_params = dssm_model.params
  55. self.infer_dump_fields = [dssm_model.doc_pos_fc]
  56. if is_infer:
  57. fetch_dict = {'query_doc_sim': R_Q_D_p}
  58. return fetch_dict
  59. loss = -paddle.sum(paddle.log(hit_prob), axis=-1)
  60. avg_cost = paddle.mean(x=loss)
  61. # print(avg_cost)
  62. self._cost = avg_cost
  63. fetch_dict = {'Loss': avg_cost}
  64. return fetch_dict
  65. def create_optimizer(self, strategy=None):
  66. optimizer = paddle.optimizer.Adam(
  67. learning_rate=self.learning_rate, lazy_mode=True)
  68. if strategy != None:
  69. import paddle.distributed.fleet as fleet
  70. optimizer = fleet.distributed_optimizer(optimizer, strategy)
  71. optimizer.minimize(self._cost)
  72. def infer_net(self, input):
  73. return self.net(input, is_infer=True)