# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import yaml import six import os import copy import xxhash import paddle.distributed.fleet as fleet import logging cont_min_ = [0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] cont_max_ = [20, 600, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50] cont_diff_ = [20, 603, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50] hash_dim_ = 1000001 continuous_range_ = range(1, 14) categorical_range_ = range(14, 40) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(message)s', level=logging.INFO) logger = logging.getLogger(__name__) class Reader(fleet.MultiSlotDataGenerator): def init(self, config): self.config = config def line_process(self, line): features = line.rstrip('\n').split('\t') dense_feature = [] sparse_feature = [] for idx in continuous_range_: if features[idx] == "": dense_feature.append(0.0) else: dense_feature.append( (float(features[idx]) - cont_min_[idx - 1]) / cont_diff_[idx - 1]) for idx in categorical_range_: sparse_feature.append([ xxhash.xxh32(str(idx) + features[idx]).intdigest() % hash_dim_ ]) label = [int(features[0])] return [label] + sparse_feature + [dense_feature] def generate_sample(self, line): "Dataset Generator" def reader(): input_data = self.line_process(line) feature_name = ["dense_input"] for idx in categorical_range_: feature_name.append("C" + str(idx - 13)) feature_name.append("label") yield zip(feature_name, input_data) return reader def dataloader(self, file_list): "DataLoader Pyreader Generator" def reader(): for file in file_list: with open(file, 'r') as f: for line in f: input_data = self.line_process(line) yield input_data return reader if __name__ == "__main__": yaml_path = sys.argv[1] utils_path = sys.argv[2] sys.path.append(utils_path) import common_ps yaml_helper = common_ps.YamlHelper() config = yaml_helper.load_yaml(yaml_path) r = Reader() r.init(config) r.run_from_stdin()