|
@@ -1,133 +0,0 @@
|
|
|
-package com.tzld.piaoquan.recommend.model.produce.i2i;
|
|
|
-
|
|
|
-import com.baidu.paddle.inference.Config;
|
|
|
-import com.baidu.paddle.inference.Predictor;
|
|
|
-import com.baidu.paddle.inference.Tensor;
|
|
|
-import com.tzld.piaoquan.recommend.model.produce.service.CMDService;
|
|
|
-import com.tzld.piaoquan.recommend.model.produce.service.OSSService;
|
|
|
-import com.tzld.piaoquan.recommend.model.produce.util.CompressUtil;
|
|
|
-import lombok.extern.slf4j.Slf4j;
|
|
|
-import ml.dmlc.xgboost4j.scala.spark.XGBoostClassificationModel;
|
|
|
-import org.apache.commons.lang.math.NumberUtils;
|
|
|
-import org.apache.commons.lang3.StringUtils;
|
|
|
-import org.apache.hadoop.io.compress.GzipCodec;
|
|
|
-import org.apache.spark.api.java.JavaRDD;
|
|
|
-import org.apache.spark.api.java.JavaSparkContext;
|
|
|
-import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator;
|
|
|
-import org.apache.spark.ml.feature.VectorAssembler;
|
|
|
-import org.apache.spark.sql.Dataset;
|
|
|
-import org.apache.spark.sql.Row;
|
|
|
-import org.apache.spark.sql.RowFactory;
|
|
|
-import org.apache.spark.sql.SparkSession;
|
|
|
-import org.apache.spark.sql.types.DataTypes;
|
|
|
-import org.apache.spark.sql.types.StructField;
|
|
|
-import org.apache.spark.sql.types.StructType;
|
|
|
-
|
|
|
-import java.io.Serializable;
|
|
|
-import java.util.*;
|
|
|
-
|
|
|
-/**
|
|
|
- * @author dyp
|
|
|
- */
|
|
|
-@Slf4j
|
|
|
-public class I2IDSSMService implements Serializable {
|
|
|
-
|
|
|
- public void predict(String[] args) {
|
|
|
-
|
|
|
- CMDService cmd = new CMDService();
|
|
|
- Map<String, String> argMap = cmd.parse(args);
|
|
|
- String file = argMap.get("path");
|
|
|
- int repartition = NumberUtils.toInt(argMap.get("repartition"), 64);
|
|
|
-
|
|
|
- // 加载模型
|
|
|
- SparkSession spark = SparkSession.builder()
|
|
|
- .appName("I2IDSSMInfer")
|
|
|
- .getOrCreate();
|
|
|
-
|
|
|
- JavaSparkContext jsc = new JavaSparkContext(spark.sparkContext());
|
|
|
- JavaRDD<String> rdd = jsc.textFile(file);
|
|
|
-
|
|
|
- // 定义处理数据的函数
|
|
|
- JavaRDD<String> processedRdd = rdd.mapPartitions(lines -> {
|
|
|
- String bucketName = "art-recommend";
|
|
|
- String objectName = "dyp/dssm.tar.gz";
|
|
|
- OSSService ossService = new OSSService();
|
|
|
-
|
|
|
- String gzPath = "/root/recommend-model/model.tar.gz";
|
|
|
- ossService.download(bucketName, gzPath, objectName);
|
|
|
- String modelDir = "/root/recommend-model";
|
|
|
- CompressUtil.decompressGzFile(gzPath, modelDir);
|
|
|
-
|
|
|
- String modelFile = modelDir + "/dssm.pdmodel";
|
|
|
- String paramFile = modelDir + "/dssm.pdiparams";
|
|
|
-
|
|
|
- Config config = new Config();
|
|
|
- config.setCppModel(modelFile, paramFile);
|
|
|
- config.enableMemoryOptim(true);
|
|
|
- config.enableMKLDNN();
|
|
|
- config.switchIrDebug(false);
|
|
|
-
|
|
|
- Predictor predictor = Predictor.createPaddlePredictor(config);
|
|
|
-
|
|
|
-
|
|
|
- return new Iterator<String>() {
|
|
|
- private final Iterator<String> iterator = lines;
|
|
|
-
|
|
|
- @Override
|
|
|
- public boolean hasNext() {
|
|
|
- return iterator.hasNext();
|
|
|
- }
|
|
|
-
|
|
|
- @Override
|
|
|
- public String next() {
|
|
|
- return processLine(iterator.next(), predictor);
|
|
|
- }
|
|
|
- };
|
|
|
- });
|
|
|
- // 将处理后的数据写入新的文件,使用Gzip压缩
|
|
|
- String outputPath = "hdfs:/dyp/vec2";
|
|
|
- processedRdd.coalesce(repartition).saveAsTextFile(outputPath, GzipCodec.class);
|
|
|
- }
|
|
|
-
|
|
|
- private String processLine(String line, Predictor predictor) {
|
|
|
-
|
|
|
- // 1 处理数据
|
|
|
- String[] sampleValues = line.split("\t", -1); // -1参数保持尾部空字符串
|
|
|
-
|
|
|
- // 检查是否有至少两个元素(vid和left_features_str)
|
|
|
- if (sampleValues.length >= 2) {
|
|
|
- String vid = sampleValues[0];
|
|
|
- String leftFeaturesStr = sampleValues[1];
|
|
|
-
|
|
|
- // 分割left_features_str并转换为float数组
|
|
|
- String[] leftFeaturesArray = leftFeaturesStr.split(",");
|
|
|
- float[] leftFeatures = new float[leftFeaturesArray.length];
|
|
|
- for (int i = 0; i < leftFeaturesArray.length; i++) {
|
|
|
- leftFeatures[i] = Float.parseFloat(leftFeaturesArray[i]);
|
|
|
- }
|
|
|
- String inNames = predictor.getInputNameById(0);
|
|
|
- Tensor inHandle = predictor.getInputHandle(inNames);
|
|
|
- // 2 设置输入
|
|
|
- inHandle.reshape(2, new int[]{1, 157});
|
|
|
- inHandle.copyFromCpu(leftFeatures);
|
|
|
-
|
|
|
- // 3 预测
|
|
|
- predictor.run();
|
|
|
-
|
|
|
- // 4 获取输入Tensor
|
|
|
- String outNames = predictor.getOutputNameById(0);
|
|
|
- Tensor outHandle = predictor.getOutputHandle(outNames);
|
|
|
- float[] outData = new float[outHandle.getSize()];
|
|
|
- outHandle.copyToCpu(outData);
|
|
|
-
|
|
|
- String result = vid + "\t" + outData[0];
|
|
|
-
|
|
|
- outHandle.destroyNativeTensor();
|
|
|
- inHandle.destroyNativeTensor();
|
|
|
- predictor.destroyNativePredictor();
|
|
|
-
|
|
|
- return result;
|
|
|
- }
|
|
|
- return "";
|
|
|
- }
|
|
|
-}
|