@@ -36,7 +36,7 @@ runner:
# model_init_path: "output_model_dnn/2" # init model
use_inference: True
save_inference_feed_varnames: ["1","2","3","4","5","6","7","8","9","10","11","12","13","14","15","16","17","18","19","20","21","22","23","24","25","26","dense_input"]
- save_inference_fetch_varnames: ["sigmoid_0.tmp_0"]
+ save_inference_fetch_varnames: []
# distribute_config
sync_mode: "async"
@@ -213,11 +213,6 @@ def main(args):
model_save_path,
epoch_id,
prefix='rec_static')
- if(upload_oss):
- compress.compress_tar(model_save_path, model_save_path + ".tar.gz")
- client = HangZhouOSSClient("art-recommend")
- client.put_object_from_file(oss_object_name, model_save_path + ".tar.gz")
- logger.info("file {} upload success".format(model_save_path + ".tar.gz"))
if use_save_data:
save_data(fetch_batch_var, model_save_path)
@@ -251,8 +246,13 @@ def main(args):
fetchvars.append(paddle.static.default_main_program()
.global_block().vars[var_name])
- save_inference_model(model_save_path, epoch_id, feedvars,
+ inference_model_path = save_inference_model(model_save_path, epoch_id, feedvars,
fetchvars, exe)
+ if(upload_oss):
+ compress.compress_tar(inference_model_path, "model.tar.gz")
+ client = HangZhouOSSClient("art-recommend")
+ client.put_object_from_file(oss_object_name, "model.tar.gz")
+ logger.info("file {} upload success".format(inference_model_path + ".tar.gz"))
def dataset_train(epoch_id, dataset, fetch_vars, exe, config):