|
@@ -0,0 +1,90 @@
|
|
|
+package model
|
|
|
+
|
|
|
+import org.apache.commons.lang.math.NumberUtils
|
|
|
+import org.apache.commons.lang3.StringUtils
|
|
|
+import org.apache.spark.ml.feature.VectorAssembler
|
|
|
+import org.apache.spark.sql.types.{DataTypes, StructField, StructType}
|
|
|
+import org.apache.spark.sql.{Dataset, Row, RowFactory, SparkSession}
|
|
|
+import ml.dmlc.xgboost4j.scala.spark.XGBoostClassifier
|
|
|
+import org.apache.spark.rdd.RDD
|
|
|
+
|
|
|
+import java.util
|
|
|
+import java.util.{ArrayList, HashMap, List, Map}
|
|
|
+
|
|
|
+object train_01_xgb_ad_20240808{
|
|
|
+ def main(args: Array[String]): Unit = {
|
|
|
+ val spark = SparkSession
|
|
|
+ .builder()
|
|
|
+ .appName(this.getClass.getName)
|
|
|
+ .getOrCreate()
|
|
|
+ val sc = spark.sparkContext
|
|
|
+ val features = Array("cpa", "b2_12h_ctr", "b2_12h_ctcvr", "b2_12h_cvr", "b2_12h_conver", "b2_12h_click", "b2_12h_conver*log(view)", "b2_12h_conver*ctcvr", "b2_7d_ctr", "b2_7d_ctcvr", "b2_7d_cvr", "b2_7d_conver", "b2_7d_click", "b2_7d_conver*log(view)", "b2_7d_conver*ctcvr")
|
|
|
+
|
|
|
+ val trainData = createData(
|
|
|
+ sc.textFile("/dw/recommend/model/33_ad_train_data_v4/20240726/part-00099.gz"),
|
|
|
+ features
|
|
|
+ )
|
|
|
+ println("train data size:" + trainData.count())
|
|
|
+
|
|
|
+ val fields = new util.ArrayList[StructField]
|
|
|
+ fields.add(DataTypes.createStructField("label", DataTypes.IntegerType, true))
|
|
|
+ for (f <- features) {
|
|
|
+ fields.add(DataTypes.createStructField(f, DataTypes.DoubleType, true))
|
|
|
+ }
|
|
|
+ val schema = DataTypes.createStructType(fields)
|
|
|
+ val trainDataSet = spark.createDataFrame(trainData, schema)
|
|
|
+ val vectorAssembler = new VectorAssembler().setInputCols(features).setOutputCol("features")
|
|
|
+ val xgbInput = vectorAssembler.transform(trainDataSet).select("features","label")
|
|
|
+ val xgbParam = Map("eta" -> 0.01f,
|
|
|
+ "max_depth" -> 5,
|
|
|
+ "objective" -> "binary:logistic",
|
|
|
+ "num_class" -> 3)
|
|
|
+ val xgbClassifier = new XGBoostClassifier()
|
|
|
+ .setEta(0.01f)
|
|
|
+ .setMissing(0.0f)
|
|
|
+ .setMaxDepth(5)
|
|
|
+ .setNumRound(100)
|
|
|
+ .setObjective("binary:logistic")
|
|
|
+ .setEvalMetric("auc")
|
|
|
+ .setFeaturesCol("features")
|
|
|
+ .setLabelCol("label")
|
|
|
+ .setNthread(1)
|
|
|
+ .setNumWorkers(1)
|
|
|
+ val model = xgbClassifier.fit(xgbInput)
|
|
|
+
|
|
|
+
|
|
|
+ val testData = createData(
|
|
|
+ sc.textFile("/dw/recommend/model/33_ad_train_data_v4/20240726/part-00098.gz"),
|
|
|
+ features
|
|
|
+ )
|
|
|
+ val testDataSet = spark.createDataFrame(testData, schema)
|
|
|
+ val testDataSetTrans = vectorAssembler.transform(testDataSet).select("features","label")
|
|
|
+ val predictions = model.transform(testDataSetTrans)
|
|
|
+
|
|
|
+ val saveData = predictions.select("label", "prediction", "features", "rawPrediction", "probability").rdd
|
|
|
+ .map(r =>{
|
|
|
+ (r.get(0), r.get(1), r.get(2), r.get(3), r.get(4)).productIterator.mkString("\t")
|
|
|
+ })
|
|
|
+ saveData.repartition(1).saveAsTextFile("/dw/recommend/model/checkpoint_xgbtest")
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ def createData(data: RDD[String], features: Array[String]): RDD[Row] = {
|
|
|
+ data.map(r => {
|
|
|
+ val line: Array[String] = StringUtils.split(r, '\t')
|
|
|
+ val label: Int = NumberUtils.toInt(line(0))
|
|
|
+ val map: util.Map[String, Double] = new util.HashMap[String, Double]
|
|
|
+ for (i <- 1 until line.length) {
|
|
|
+ val fv: Array[String] = StringUtils.split(line(i), ':')
|
|
|
+ map.put(fv(0), NumberUtils.toDouble(fv(1), 0.0))
|
|
|
+ }
|
|
|
+
|
|
|
+ val v: Array[AnyRef] = new Array[AnyRef](features.length + 1)
|
|
|
+ v(0) = label
|
|
|
+ for (i <- 0 until features.length) {
|
|
|
+ v(i + 1) = map.getOrDefault(features(i), 0.0d)
|
|
|
+ }
|
|
|
+ RowFactory.create(v)
|
|
|
+ })
|
|
|
+ }
|
|
|
+}
|