| 
					
				 | 
			
			
				@@ -100,11 +100,11 @@ class DSSMLayer(nn.Layer): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     def forward(self, left_features, right_features): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         # 获取两个视频的特征表示 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        paddle.static.Print(left_features, message="lqc left model input shape:") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        paddle.static.Print(right_features, message="lqc right model input shape:")         
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        #paddle.static.Print(left_features, message="lqc left model input shape:") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        #paddle.static.Print(right_features, message="lqc right model input shape:")         
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         left_vec, right_vec = self.get_vectors(left_features, right_features) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        paddle.static.Print(left_vec, message="lqc left model output shape:") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        paddle.static.Print(right_vec, message="lqc right model output shape:") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        #paddle.static.Print(left_vec, message="lqc left model output shape:") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        #paddle.static.Print(right_vec, message="lqc right model output shape:") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         # 计算相似度 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         sim_score = F.cosine_similarity( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             left_vec,  
			 | 
		
	
	
		
			
				| 
					
				 | 
			
			
				@@ -124,22 +124,22 @@ class DSSMLayer(nn.Layer): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         left_vec = paddle.reshape(left_embedded, [-1, self.feature_num * self.embedding_dim]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                
			 | 
		
	
		
			
				 | 
				 | 
			
			
				          
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        paddle.static.Print(left_vec, message=f"lqc lqc left_vec:") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        #paddle.static.Print(left_vec, message=f"lqc lqc left_vec:") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				          
			 | 
		
	
		
			
				 | 
				 | 
			
			
				          
			 | 
		
	
		
			
				 | 
				 | 
			
			
				          
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         for i, layer in enumerate(self._left_tower): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             left_vec = layer(left_vec) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            paddle.static.Print(left_vec, message=f"After left layer {i}:") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            #paddle.static.Print(left_vec, message=f"After left layer {i}:") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				          
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         # 处理右视频特征 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         right_embedded = self._process_features(right_features, self.right_embeddings) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         # right_vec = right_embedded 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         right_vec = paddle.reshape(right_embedded, [-1, self.feature_num * self.embedding_dim])   
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        paddle.static.Print(right_vec, message=f"lqc lqc left_vec:") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        #paddle.static.Print(right_vec, message=f"lqc lqc left_vec:") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         for layer in self._right_tower: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             right_vec = layer(right_vec) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            paddle.static.Print(right_vec, message=f"After left layer {i}:") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            #paddle.static.Print(right_vec, message=f"After left layer {i}:") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				              
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         # 确保输出是L2归一化的 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         left_vec = F.normalize(left_vec, p=2, axis=1) 
			 |