Explorar o código

nor xgb model

jch hai 4 meses
pai
achega
d65d610cb2

+ 3 - 3
recommend-model-produce/src/main/scala/com/tzld/piaoquan/recommend/model/pred_recsys_61_xgb_nor_hdfsfile_20241209.scala

@@ -66,7 +66,7 @@ object pred_recsys_61_xgb_nor_hdfsfile_20241209 {
     val testDataSetTrans = vectorAssembler.transform(testDataSet).select("features", "label")
     val predictions = model.transform(testDataSetTrans)
 
-    val saveData = predictions.select("label", "originalPrediction").rdd
+    val saveData = predictions.select("label", "prediction").rdd
       .map(r => {
         (r.get(0), r.get(1)).productIterator.mkString("\t")
       })
@@ -81,9 +81,9 @@ object pred_recsys_61_xgb_nor_hdfsfile_20241209 {
 
     val evaluator = new RegressionEvaluator()
       .setLabelCol("label")
-      .setPredictionCol("originalPrediction")
+      .setPredictionCol("prediction")
       .setMetricName("rmse")
-    val rmse = evaluator.evaluate(predictions.select("label", "originalPrediction"))
+    val rmse = evaluator.evaluate(predictions.select("label", "prediction"))
     println("recsys rov:rmse:" + rmse)
 
     println("---------------------------------\n")

+ 4 - 4
recommend-model-produce/src/main/scala/com/tzld/piaoquan/recommend/model/train_recsys_61_xgb_nor_20241209.scala

@@ -105,8 +105,8 @@ object train_recsys_61_xgb_nor_20241209 {
       val testDataSetTrans = vectorAssembler.transform(testDataSet).select("features", "label")
       val predictions = model.transform(testDataSetTrans)
 
-      println("recsys nor:columns:" + predictions.columns.mkString(",")) //[label, features, originalPrediction]
-      val saveData = predictions.select("label", "originalPrediction").rdd
+      println("recsys nor:columns:" + predictions.columns.mkString(",")) //[label, features, prediction]
+      val saveData = predictions.select("label", "prediction").rdd
         .map(r => {
           (r.get(0), r.get(1)).productIterator.mkString("\t")
         })
@@ -120,9 +120,9 @@ object train_recsys_61_xgb_nor_20241209 {
       }
       val evaluator = new RegressionEvaluator()
         .setLabelCol("label")
-        .setPredictionCol("originalPrediction")
+        .setPredictionCol("prediction")
         .setMetricName("rmse")
-      val rmse = evaluator.evaluate(predictions.select("label", "originalPrediction"))
+      val rmse = evaluator.evaluate(predictions.select("label", "prediction"))
       println("recsys nor:rmse:" + rmse)
     }
   }