فهرست منبع

Merge branch 'feature/zhangbo' of algorithm/recommend-model into main

zhangbo 9 ماه پیش
والد
کامیت
78218ab1d0

+ 517 - 0
recommend-model-produce/src/main/resources/20240809_ad_feature_name_517.txt

@@ -0,0 +1,517 @@
+cpa
+b2_1h_ctr
+b2_1h_ctcvr
+b2_1h_cvr
+b2_1h_conver
+b2_1h_click
+b2_1h_conver*log(view)
+b2_1h_conver*ctcvr
+b2_2h_ctr
+b2_2h_ctcvr
+b2_2h_cvr
+b2_2h_conver
+b2_2h_click
+b2_2h_conver*log(view)
+b2_2h_conver*ctcvr
+b2_3h_ctr
+b2_3h_ctcvr
+b2_3h_cvr
+b2_3h_conver
+b2_3h_click
+b2_3h_conver*log(view)
+b2_3h_conver*ctcvr
+b2_6h_ctr
+b2_6h_ctcvr
+b2_6h_cvr
+b2_6h_conver
+b2_6h_click
+b2_6h_conver*log(view)
+b2_6h_conver*ctcvr
+b2_12h_ctr
+b2_12h_ctcvr
+b2_12h_cvr
+b2_12h_conver
+b2_12h_click
+b2_12h_conver*log(view)
+b2_12h_conver*ctcvr
+b2_1d_ctr
+b2_1d_ctcvr
+b2_1d_cvr
+b2_1d_conver
+b2_1d_click
+b2_1d_conver*log(view)
+b2_1d_conver*ctcvr
+b2_3d_ctr
+b2_3d_ctcvr
+b2_3d_cvr
+b2_3d_conver
+b2_3d_click
+b2_3d_conver*log(view)
+b2_3d_conver*ctcvr
+b2_7d_ctr
+b2_7d_ctcvr
+b2_7d_cvr
+b2_7d_conver
+b2_7d_click
+b2_7d_conver*log(view)
+b2_7d_conver*ctcvr
+b2_yesterday_ctr
+b2_yesterday_ctcvr
+b2_yesterday_cvr
+b2_yesterday_conver
+b2_yesterday_click
+b2_yesterday_conver*log(view)
+b2_yesterday_conver*ctcvr
+b2_today_ctr
+b2_today_ctcvr
+b2_today_cvr
+b2_today_conver
+b2_today_click
+b2_today_conver*log(view)
+b2_today_conver*ctcvr
+b3_1h_ctr
+b3_1h_ctcvr
+b3_1h_cvr
+b3_1h_conver
+b3_1h_click
+b3_1h_conver*log(view)
+b3_1h_conver*ctcvr
+b3_2h_ctr
+b3_2h_ctcvr
+b3_2h_cvr
+b3_2h_conver
+b3_2h_click
+b3_2h_conver*log(view)
+b3_2h_conver*ctcvr
+b3_3h_ctr
+b3_3h_ctcvr
+b3_3h_cvr
+b3_3h_conver
+b3_3h_click
+b3_3h_conver*log(view)
+b3_3h_conver*ctcvr
+b3_6h_ctr
+b3_6h_ctcvr
+b3_6h_cvr
+b3_6h_conver
+b3_6h_click
+b3_6h_conver*log(view)
+b3_6h_conver*ctcvr
+b3_12h_ctr
+b3_12h_ctcvr
+b3_12h_cvr
+b3_12h_conver
+b3_12h_click
+b3_12h_conver*log(view)
+b3_12h_conver*ctcvr
+b3_1d_ctr
+b3_1d_ctcvr
+b3_1d_cvr
+b3_1d_conver
+b3_1d_click
+b3_1d_conver*log(view)
+b3_1d_conver*ctcvr
+b3_3d_ctr
+b3_3d_ctcvr
+b3_3d_cvr
+b3_3d_conver
+b3_3d_click
+b3_3d_conver*log(view)
+b3_3d_conver*ctcvr
+b3_7d_ctr
+b3_7d_ctcvr
+b3_7d_cvr
+b3_7d_conver
+b3_7d_click
+b3_7d_conver*log(view)
+b3_7d_conver*ctcvr
+b3_yesterday_ctr
+b3_yesterday_ctcvr
+b3_yesterday_cvr
+b3_yesterday_conver
+b3_yesterday_click
+b3_yesterday_conver*log(view)
+b3_yesterday_conver*ctcvr
+b3_today_ctr
+b3_today_ctcvr
+b3_today_cvr
+b3_today_conver
+b3_today_click
+b3_today_conver*log(view)
+b3_today_conver*ctcvr
+b4_1h_ctr
+b4_1h_ctcvr
+b4_1h_cvr
+b4_1h_conver
+b4_1h_click
+b4_1h_conver*log(view)
+b4_1h_conver*ctcvr
+b4_2h_ctr
+b4_2h_ctcvr
+b4_2h_cvr
+b4_2h_conver
+b4_2h_click
+b4_2h_conver*log(view)
+b4_2h_conver*ctcvr
+b4_3h_ctr
+b4_3h_ctcvr
+b4_3h_cvr
+b4_3h_conver
+b4_3h_click
+b4_3h_conver*log(view)
+b4_3h_conver*ctcvr
+b4_6h_ctr
+b4_6h_ctcvr
+b4_6h_cvr
+b4_6h_conver
+b4_6h_click
+b4_6h_conver*log(view)
+b4_6h_conver*ctcvr
+b4_12h_ctr
+b4_12h_ctcvr
+b4_12h_cvr
+b4_12h_conver
+b4_12h_click
+b4_12h_conver*log(view)
+b4_12h_conver*ctcvr
+b4_1d_ctr
+b4_1d_ctcvr
+b4_1d_cvr
+b4_1d_conver
+b4_1d_click
+b4_1d_conver*log(view)
+b4_1d_conver*ctcvr
+b4_3d_ctr
+b4_3d_ctcvr
+b4_3d_cvr
+b4_3d_conver
+b4_3d_click
+b4_3d_conver*log(view)
+b4_3d_conver*ctcvr
+b4_7d_ctr
+b4_7d_ctcvr
+b4_7d_cvr
+b4_7d_conver
+b4_7d_click
+b4_7d_conver*log(view)
+b4_7d_conver*ctcvr
+b4_yesterday_ctr
+b4_yesterday_ctcvr
+b4_yesterday_cvr
+b4_yesterday_conver
+b4_yesterday_click
+b4_yesterday_conver*log(view)
+b4_yesterday_conver*ctcvr
+b4_today_ctr
+b4_today_ctcvr
+b4_today_cvr
+b4_today_conver
+b4_today_click
+b4_today_conver*log(view)
+b4_today_conver*ctcvr
+b5_1h_ctr
+b5_1h_ctcvr
+b5_1h_cvr
+b5_1h_conver
+b5_1h_click
+b5_1h_conver*log(view)
+b5_1h_conver*ctcvr
+b5_2h_ctr
+b5_2h_ctcvr
+b5_2h_cvr
+b5_2h_conver
+b5_2h_click
+b5_2h_conver*log(view)
+b5_2h_conver*ctcvr
+b5_3h_ctr
+b5_3h_ctcvr
+b5_3h_cvr
+b5_3h_conver
+b5_3h_click
+b5_3h_conver*log(view)
+b5_3h_conver*ctcvr
+b5_6h_ctr
+b5_6h_ctcvr
+b5_6h_cvr
+b5_6h_conver
+b5_6h_click
+b5_6h_conver*log(view)
+b5_6h_conver*ctcvr
+b5_12h_ctr
+b5_12h_ctcvr
+b5_12h_cvr
+b5_12h_conver
+b5_12h_click
+b5_12h_conver*log(view)
+b5_12h_conver*ctcvr
+b5_1d_ctr
+b5_1d_ctcvr
+b5_1d_cvr
+b5_1d_conver
+b5_1d_click
+b5_1d_conver*log(view)
+b5_1d_conver*ctcvr
+b5_3d_ctr
+b5_3d_ctcvr
+b5_3d_cvr
+b5_3d_conver
+b5_3d_click
+b5_3d_conver*log(view)
+b5_3d_conver*ctcvr
+b5_7d_ctr
+b5_7d_ctcvr
+b5_7d_cvr
+b5_7d_conver
+b5_7d_click
+b5_7d_conver*log(view)
+b5_7d_conver*ctcvr
+b5_yesterday_ctr
+b5_yesterday_ctcvr
+b5_yesterday_cvr
+b5_yesterday_conver
+b5_yesterday_click
+b5_yesterday_conver*log(view)
+b5_yesterday_conver*ctcvr
+b5_today_ctr
+b5_today_ctcvr
+b5_today_cvr
+b5_today_conver
+b5_today_click
+b5_today_conver*log(view)
+b5_today_conver*ctcvr
+b8_1h_ctr
+b8_1h_ctcvr
+b8_1h_cvr
+b8_1h_conver
+b8_1h_click
+b8_1h_conver*log(view)
+b8_1h_conver*ctcvr
+b8_2h_ctr
+b8_2h_ctcvr
+b8_2h_cvr
+b8_2h_conver
+b8_2h_click
+b8_2h_conver*log(view)
+b8_2h_conver*ctcvr
+b8_3h_ctr
+b8_3h_ctcvr
+b8_3h_cvr
+b8_3h_conver
+b8_3h_click
+b8_3h_conver*log(view)
+b8_3h_conver*ctcvr
+b8_6h_ctr
+b8_6h_ctcvr
+b8_6h_cvr
+b8_6h_conver
+b8_6h_click
+b8_6h_conver*log(view)
+b8_6h_conver*ctcvr
+b8_12h_ctr
+b8_12h_ctcvr
+b8_12h_cvr
+b8_12h_conver
+b8_12h_click
+b8_12h_conver*log(view)
+b8_12h_conver*ctcvr
+b8_1d_ctr
+b8_1d_ctcvr
+b8_1d_cvr
+b8_1d_conver
+b8_1d_click
+b8_1d_conver*log(view)
+b8_1d_conver*ctcvr
+b8_3d_ctr
+b8_3d_ctcvr
+b8_3d_cvr
+b8_3d_conver
+b8_3d_click
+b8_3d_conver*log(view)
+b8_3d_conver*ctcvr
+b8_7d_ctr
+b8_7d_ctcvr
+b8_7d_cvr
+b8_7d_conver
+b8_7d_click
+b8_7d_conver*log(view)
+b8_7d_conver*ctcvr
+b8_yesterday_ctr
+b8_yesterday_ctcvr
+b8_yesterday_cvr
+b8_yesterday_conver
+b8_yesterday_click
+b8_yesterday_conver*log(view)
+b8_yesterday_conver*ctcvr
+b8_today_ctr
+b8_today_ctcvr
+b8_today_cvr
+b8_today_conver
+b8_today_click
+b8_today_conver*log(view)
+b8_today_conver*ctcvr
+b9_1h_ctr
+b9_1h_ctcvr
+b9_1h_cvr
+b9_1h_conver
+b9_1h_click
+b9_1h_conver*log(view)
+b9_1h_conver*ctcvr
+b9_2h_ctr
+b9_2h_ctcvr
+b9_2h_cvr
+b9_2h_conver
+b9_2h_click
+b9_2h_conver*log(view)
+b9_2h_conver*ctcvr
+b9_3h_ctr
+b9_3h_ctcvr
+b9_3h_cvr
+b9_3h_conver
+b9_3h_click
+b9_3h_conver*log(view)
+b9_3h_conver*ctcvr
+b9_6h_ctr
+b9_6h_ctcvr
+b9_6h_cvr
+b9_6h_conver
+b9_6h_click
+b9_6h_conver*log(view)
+b9_6h_conver*ctcvr
+b9_12h_ctr
+b9_12h_ctcvr
+b9_12h_cvr
+b9_12h_conver
+b9_12h_click
+b9_12h_conver*log(view)
+b9_12h_conver*ctcvr
+b9_1d_ctr
+b9_1d_ctcvr
+b9_1d_cvr
+b9_1d_conver
+b9_1d_click
+b9_1d_conver*log(view)
+b9_1d_conver*ctcvr
+b9_3d_ctr
+b9_3d_ctcvr
+b9_3d_cvr
+b9_3d_conver
+b9_3d_click
+b9_3d_conver*log(view)
+b9_3d_conver*ctcvr
+b9_7d_ctr
+b9_7d_ctcvr
+b9_7d_cvr
+b9_7d_conver
+b9_7d_click
+b9_7d_conver*log(view)
+b9_7d_conver*ctcvr
+b9_yesterday_ctr
+b9_yesterday_ctcvr
+b9_yesterday_cvr
+b9_yesterday_conver
+b9_yesterday_click
+b9_yesterday_conver*log(view)
+b9_yesterday_conver*ctcvr
+b9_today_ctr
+b9_today_ctcvr
+b9_today_cvr
+b9_today_conver
+b9_today_click
+b9_today_conver*log(view)
+b9_today_conver*ctcvr
+b6_7d_ctr
+b6_7d_ctcvr
+b6_7d_cvr
+b6_7d_conver
+b6_7d_click
+b6_7d_conver*log(view)
+b6_7d_conver*ctcvr
+b6_14d_ctr
+b6_14d_ctcvr
+b6_14d_cvr
+b6_14d_conver
+b6_14d_click
+b6_14d_conver*log(view)
+b6_14d_conver*ctcvr
+b7_7d_ctr
+b7_7d_ctcvr
+b7_7d_cvr
+b7_7d_conver
+b7_7d_click
+b7_7d_conver*log(view)
+b7_7d_conver*ctcvr
+b7_14d_ctr
+b7_14d_ctcvr
+b7_14d_cvr
+b7_14d_conver
+b7_14d_click
+b7_14d_conver*log(view)
+b7_14d_conver*ctcvr
+viewAll
+clickAll
+converAll
+incomeAll
+ctr_all
+ctcvr_all
+cvr_all
+timediff_view
+timediff_click
+timediff_conver
+actionstatic_view
+actionstatic_click
+actionstatic_conver
+actionstatic_income
+actionstatic_ctr
+actionstatic_ctcvr
+actionstatic_cvr
+e1_tags_3d_matchnum
+e1_tags_3d_maxscore
+e1_tags_3d_avgscore
+e1_tags_7d_matchnum
+e1_tags_7d_maxscore
+e1_tags_7d_avgscore
+e1_tags_14d_matchnum
+e1_tags_14d_maxscore
+e1_tags_14d_avgscore
+e2_tags_3d_matchnum
+e2_tags_3d_maxscore
+e2_tags_3d_avgscore
+e2_tags_7d_matchnum
+e2_tags_7d_maxscore
+e2_tags_7d_avgscore
+e2_tags_14d_matchnum
+e2_tags_14d_maxscore
+e2_tags_14d_avgscore
+d1_feature_3h_ctr
+d1_feature_3h_ctcvr
+d1_feature_3h_cvr
+d1_feature_3h_conver
+d1_feature_6h_ctr
+d1_feature_6h_ctcvr
+d1_feature_6h_cvr
+d1_feature_6h_conver
+d1_feature_12h_ctr
+d1_feature_12h_ctcvr
+d1_feature_12h_cvr
+d1_feature_12h_conver
+d1_feature_1d_ctr
+d1_feature_1d_ctcvr
+d1_feature_1d_cvr
+d1_feature_1d_conver
+d1_feature_3d_ctr
+d1_feature_3d_ctcvr
+d1_feature_3d_cvr
+d1_feature_3d_conver
+d1_feature_7d_ctr
+d1_feature_7d_ctcvr
+d1_feature_7d_cvr
+d1_feature_7d_conver
+vid_rank_ctr_1d
+vid_rank_ctr_3d
+vid_rank_ctr_7d
+vid_rank_ctr_14d
+vid_rank_ctcvr_1d
+vid_rank_ctcvr_3d
+vid_rank_ctcvr_7d
+vid_rank_ctcvr_14d
+ctitle_vtitle_similarity

+ 41 - 0
recommend-model-produce/src/main/scala/com/tzld/piaoquan/recommend/model/ParamUtils.scala

@@ -0,0 +1,41 @@
+package com.tzld.piaoquan.recommend.model
+
+import scala.collection.mutable
+
+object ParamUtils {
+  def parseArgs(args: Array[String]): mutable.HashMap[String, String] = {
+    println("args size:" + args.size)
+
+    val rst = new mutable.HashMap[String, String]() {
+      override def default(key: String) = "无参数传入"
+    }
+    for (a <- args) {
+      val key_val = a.split(":")
+      if (key_val.length >= 2) {
+        // 为了解决hdfs正则化路径时Array变多个的问题
+        if (rst.contains(key_val(0))) {
+          val value = rst.get(key_val(0)).get
+          val newValue = value + "," + key_val.splitAt(1)._2.mkString(":")
+          rst += (key_val(0) -> newValue)
+          println(key_val(0) + ":" + newValue)
+        } else {
+          rst += (key_val(0) -> key_val.splitAt(1)._2.mkString(":"))
+          println(key_val(0) + ":" + key_val.splitAt(1)._2.mkString(":"))
+        }
+      }
+    }
+    rst
+  }
+
+  def parseLogKey(logKey: String): Tuple7[String, String, String, String, String, String, String] = {
+    val l = logKey.split(":")
+    val mid = l(0)
+    val videoid = l(1)
+    val logtimestamp = l(2)
+    val apptype = l(3)
+    val pagesource_change = l(4)
+    val abcode = l(5)
+    val video_recommend = l(6)
+    (mid, videoid, logtimestamp, apptype, pagesource_change, abcode, video_recommend)
+  }
+}

+ 75 - 0
recommend-model-produce/src/main/scala/com/tzld/piaoquan/recommend/model/ana_01_xgb_ad_20240809.scala

@@ -0,0 +1,75 @@
+package com.tzld.piaoquan.recommend.model
+
+import ml.dmlc.xgboost4j.scala.spark.XGBoostClassifier
+import org.apache.commons.lang.math.NumberUtils
+import org.apache.commons.lang3.StringUtils
+import org.apache.hadoop.io.compress.GzipCodec
+import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
+import org.apache.spark.ml.feature.VectorAssembler
+import org.apache.spark.rdd.RDD
+import org.apache.spark.sql.types.DataTypes
+import org.apache.spark.sql.{Dataset, Row, SparkSession}
+
+import java.util
+import scala.io.Source
+
+object ana_01_xgb_ad_20240809{
+  def main(args: Array[String]): Unit = {
+    val spark = SparkSession
+      .builder()
+      .appName(this.getClass.getName)
+      .getOrCreate()
+    val sc = spark.sparkContext
+
+    val param = ParamUtils.parseArgs(args)
+    val savePath = param.getOrElse("savePath", "/dw/recommend/model/34_ad_predict_data/")
+
+    val hdfsPath = savePath
+    // 统计分cid的分数
+    sc.textFile(hdfsPath).map(r=>{
+      val rList = r.split("\t")
+      val cid = rList(3)
+      val score = rList(2).replace("[", "").replace("]", "")
+        .split(",")(1).toDouble
+      val label = rList(0).toDouble
+      (cid, (1, label, score))
+    }).reduceByKey{
+      case (a, b) => (a._1 + b._1, a._2 + b._2, a._3 + b._3)
+    }.map{
+      case (cid, (all, zheng, scores)) =>
+        (cid, all, zheng, scores, zheng / all, scores / all)
+    }.collect().sortBy(_._1).map(_.productIterator.mkString("\t")).foreach(println)
+
+  }
+
+
+}
+
+
+
+//rabit_timeout -> -1
+//scale_pos_weight -> 1.0
+//seed -> 0
+//handle_invalid -> error
+//features_col -> features
+//label_col -> label
+//num_workers -> 1
+//subsample -> 0.8
+//max_depth -> 5
+//probability_col -> probability
+//raw_prediction_col -> rawPrediction
+//tree_limit -> 0
+//dmlc_worker_connect_retry -> 5
+//train_test_ratio -> 1.0
+//use_external_memory -> false
+//objective -> binary:logistic
+//eval_metric -> auc
+//num_round -> 1000
+//missing -> 0.0
+//rabit_ring_reduce_threshold -> 32768
+//tracker_conf -> TrackerConf(0,python,,)
+//eta -> 0.009999999776482582
+//colsample_bytree -> 0.8
+//allow_non_zero_for_missing -> false
+//nthread -> 8
+//prediction_col -> prediction

+ 92 - 25
recommend-model-produce/src/main/scala/com/tzld/piaoquan/recommend/model/train_01_xgb_ad_20240808.scala

@@ -10,7 +10,9 @@ import org.apache.spark.rdd.RDD
 import org.apache.spark.sql.types.{DataTypes, StructField}
 import org.apache.spark.sql.{Dataset, Row, RowFactory, SparkSession}
 
+import scala.collection.JavaConversions._
 import java.util
+import scala.collection.mutable.ArrayBuffer
 import scala.io.Source
 
 object train_01_xgb_ad_20240808{
@@ -20,10 +22,24 @@ object train_01_xgb_ad_20240808{
       .appName(this.getClass.getName)
       .getOrCreate()
     val sc = spark.sparkContext
-//    val features = Array("cpa", "b2_12h_ctr", "b2_12h_ctcvr", "b2_12h_cvr", "b2_12h_conver", "b2_12h_click", "b2_12h_conver*log(view)", "b2_12h_conver*ctcvr", "b2_7d_ctr", "b2_7d_ctcvr", "b2_7d_cvr", "b2_7d_conver", "b2_7d_click", "b2_7d_conver*log(view)", "b2_7d_conver*ctcvr")
+
+    val param = ParamUtils.parseArgs(args)
+    val featureFile = param.getOrElse("featureFile", "20240703_ad_feature_name.txt")
+    val trainPath = param.getOrElse("trainPath", "/dw/recommend/model/33_ad_train_data_v4/20240724")
+    val testPath = param.getOrElse("testPath", "/dw/recommend/model/33_ad_train_data_v4/20240725")
+    val savePath = param.getOrElse("savePath", "/dw/recommend/model/34_ad_predict_data/")
+    val featureFilter = param.getOrElse("featureFilter", "XXXXXX").split(",")
+    val eta = param.getOrElse("eta", "0.01").toDouble
+    val gamma = param.getOrElse("gamma", "0.0").toDouble
+    val max_depth = param.getOrElse("max_depth", "5").toInt
+    val num_round = param.getOrElse("num_round", "100").toInt
+    val num_worker = param.getOrElse("num_worker", "20").toInt
+    val func_object = param.getOrElse("func_object", "binary:logistic")
+    val func_metric = param.getOrElse("func_metric", "auc")
+    val repartition = param.getOrElse("repartition", "20").toInt
 
     val loader = getClass.getClassLoader
-    val resourceUrl = loader.getResource("20240703_ad_feature_name.txt")
+    val resourceUrl = loader.getResource(featureFile)
     val content =
       if (resourceUrl != null) {
         val content = Source.fromURL(resourceUrl).getLines().mkString("\n")
@@ -33,20 +49,27 @@ object train_01_xgb_ad_20240808{
         ""
       }
     println(content)
+
     val features = content.split("\n")
       .map(r => r.replace(" ", "").replaceAll("\n", ""))
-      .filter(r => r.nonEmpty)
-
+      .filter(r => r.nonEmpty || !featureFilter.contains(r))
+    println("features.size=" + features.length)
 
-    val trainData = createData(
-      sc.textFile("/dw/recommend/model/33_ad_train_data_v4/20240724"),
+    val trainData = createData4Ad(
+      sc.textFile(trainPath),
       features
     )
-    println("train data size:" + trainData.count())
+    println("zhangbo:train data size:" + trainData.count())
 
-    val fields = Array(
+    var fields = Array(
       DataTypes.createStructField("label", DataTypes.IntegerType, true)
+//      DataTypes.createStructField("logKey", DataTypes.IntegerType, true)
+
     ) ++ features.map(f => DataTypes.createStructField(f, DataTypes.DoubleType, true))
+
+    fields = fields ++ Array(
+      DataTypes.createStructField("logKey", DataTypes.StringType, true)
+    )
     val schema = DataTypes.createStructType(fields)
     val trainDataSet: Dataset[Row] = spark.createDataFrame(trainData, schema)
     val vectorAssembler = new VectorAssembler().setInputCols(features).setOutputCol("features")
@@ -56,39 +79,43 @@ object train_01_xgb_ad_20240808{
 //      "objective" -> "binary:logistic",
 //      "num_class" -> 3)
     val xgbClassifier = new XGBoostClassifier()
-      .setEta(0.01f)
+      .setEta(eta)
+      .setGamma(gamma)
       .setMissing(0.0f)
-      .setMaxDepth(5)
-      .setNumRound(1000)
+      .setMaxDepth(max_depth)
+      .setNumRound(num_round)
       .setSubsample(0.8)
       .setColsampleBytree(0.8)
       .setScalePosWeight(1)
-      .setObjective("binary:logistic")
-      .setEvalMetric("auc")
+      .setObjective(func_object)
+      .setEvalMetric(func_metric)
       .setFeaturesCol("features")
       .setLabelCol("label")
       .setNthread(1)
-      .setNumWorkers(1)
+      .setNumWorkers(num_worker)
+  .setSeed(2024)
+  .setMinChildWeight(1)
     val model = xgbClassifier.fit(xgbInput)
 
 
-    val testData = createData(
-      sc.textFile("/dw/recommend/model/33_ad_train_data_v4/20240725"),
+    val testData = createData4Ad(
+      sc.textFile(testPath),
       features
     )
     val testDataSet = spark.createDataFrame(testData, schema)
-    val testDataSetTrans = vectorAssembler.transform(testDataSet).select("features","label")
+    val testDataSetTrans = vectorAssembler.transform(testDataSet).select("features","label", "logKey")
     val predictions = model.transform(testDataSetTrans)
-
-    val saveData = predictions.select("label", "prediction", "features", "rawPrediction", "probability").rdd
+//     [label, features, probability, prediction, rawPrediction]
+    println("zhangbo:columns:" + predictions.columns.mkString(","))
+    val saveData = predictions.select("label", "rawPrediction", "probability", "logKey").rdd
       .map(r =>{
-        (r.get(0), r.get(1), r.get(2), r.get(3), r.get(4)).productIterator.mkString("\t")
+        (r.get(0), r.get(1), r.get(2), r.get(3)).productIterator.mkString("\t")
     })
-    val hdfsPath = "/dw/recommend/model/checkpoint_xgbtest"
+    val hdfsPath = savePath
     if (hdfsPath.nonEmpty && hdfsPath.startsWith("/dw/recommend/model/")) {
       println("删除路径并开始数据写入:" + hdfsPath)
       MyHdfsUtils.delete_hdfs_path(hdfsPath)
-      saveData.repartition(100).saveAsTextFile(hdfsPath, classOf[GzipCodec])
+      saveData.repartition(repartition).saveAsTextFile(hdfsPath, classOf[GzipCodec])
     } else {
       println("路径不合法,无法写入:" + hdfsPath)
     }
@@ -101,24 +128,64 @@ object train_01_xgb_ad_20240808{
       .setMetricName("areaUnderROC")
     val auc = evaluator.evaluate(predictions.select("label", "probability"))
     println("zhangbo:auc:" + auc)
+
+    // 统计分cid的分数
+    sc.textFile(hdfsPath).map(r=>{
+      val rList = r.split("\t")
+      val cid = rList(3)
+      val score = rList(2).replace("[", "").replace("]", "")
+        .split(",")(1).toDouble
+      val label = rList(0).toDouble
+      (cid, (1, label, score))
+    }).reduceByKey{
+      case (a, b) => (a._1 + b._1, a._2 + b._2, a._3 + b._3)
+    }.map{
+      case (cid, (all, zheng, scores)) =>
+        (cid, all, zheng, scores, zheng / all, scores / all)
+    }.collect().sortBy(_._1).map(_.productIterator.mkString("\t")).foreach(println)
+
   }
 
 
-  def createData(data: RDD[String], features: Array[String]): RDD[Row] = {
+  def createData4Ad(data: RDD[String], features: Array[String]): RDD[Row] = {
     data.map(r => {
-      val line: Array[String] = StringUtils.split(r, '\t')
+//      val rList = r.split("\t")
+//      val label = rList(0).toInt
+//      val featureMap = scala.collection.mutable.Map[String, Double]()
+//      var cid = -1
+//      rList.drop(1).foreach(kv =>{
+//        val kv_ = kv.split(":")
+//        if (kv_(0).startsWith("cid_")){
+//          cid = kv_(0).split("_")(1).toInt
+//        }else{
+//          featureMap.put(kv_(0), kv_(1).toDouble)
+//        }
+//      })
+//      val v: Array[Any] = new Array[Any](features.length + 1)
+//      v(0) = label
+////      v(1) = cid
+//      for (i <- 0 until features.length) {
+//        v(i + 1) = featureMap.getOrElse(r, 0.0D)
+//      }
+//      Row(v: _*)
+val line: Array[String] = StringUtils.split(r, '\t')
       val label: Int = NumberUtils.toInt(line(0))
       val map: util.Map[String, Double] = new util.HashMap[String, Double]
+      var cid = "-1"
       for (i <- 1 until line.length) {
         val fv: Array[String] = StringUtils.split(line(i), ':')
         map.put(fv(0), NumberUtils.toDouble(fv(1), 0.0))
+        if(fv(0).startsWith("cid_")){
+          cid = fv(0).split("_")(1)
+        }
       }
 
-      val v: Array[Any] = new Array[Any](features.length + 1)
+      val v: Array[Any] = new Array[Any](features.length + 2)
       v(0) = label
       for (i <- 0 until features.length) {
         v(i + 1) = map.getOrDefault(features(i), 0.0d)
       }
+      v(features.length + 1) = cid
       Row(v: _*)
     })
   }