|
@@ -146,28 +146,28 @@ object recsys_01_ros_multi_class_xgb_train {
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
- val evaluator = new BinaryClassificationEvaluator()
|
|
|
|
- .setLabelCol("label")
|
|
|
|
- .setRawPredictionCol("probability")
|
|
|
|
- .setMetricName("areaUnderROC")
|
|
|
|
- val auc = evaluator.evaluate(predictions.select("label", "probability"))
|
|
|
|
- println("zhangbo:auc:" + auc)
|
|
|
|
|
|
+// val evaluator = new BinaryClassificationEvaluator()
|
|
|
|
+// .setLabelCol("label")
|
|
|
|
+// .setRawPredictionCol("probability")
|
|
|
|
+// .setMetricName("areaUnderROC")
|
|
|
|
+// val auc = evaluator.evaluate(predictions.select("label", "probability"))
|
|
|
|
+// println("zhangbo:auc:" + auc)
|
|
|
|
|
|
// 统计分cid的分数
|
|
// 统计分cid的分数
|
|
- sc.textFile(hdfsPath).map(r => {
|
|
|
|
- val rList = r.split("\t")
|
|
|
|
- val vid = JSON.parseObject(rList(3)).getString("vid")
|
|
|
|
- val label = rList(0).toDouble
|
|
|
|
- val score = RosUtil.multiClassModelScore(rList(2), predictLabelList_br.value)
|
|
|
|
-
|
|
|
|
- ((vid, label), (1, score))
|
|
|
|
- }).reduceByKey {
|
|
|
|
- case ((c1, s1), (c2, s2)) =>
|
|
|
|
- (c1 + c2, (s1 + s2))
|
|
|
|
- }.map {
|
|
|
|
- case ((vid, label), (count, sumScore)) =>
|
|
|
|
- (vid, label, count, sumScore, sumScore / count)
|
|
|
|
- }.collect().sortBy(_._1).map(_.productIterator.mkString("\t")).foreach(println)
|
|
|
|
|
|
+// sc.textFile(hdfsPath).map(r => {
|
|
|
|
+// val rList = r.split("\t")
|
|
|
|
+// val vid = JSON.parseObject(rList(3)).getString("vid")
|
|
|
|
+// val label = rList(0).toDouble
|
|
|
|
+// val score = RosUtil.multiClassModelScore(rList(2), predictLabelList_br.value)
|
|
|
|
+//
|
|
|
|
+// ((vid, label), (1, score))
|
|
|
|
+// }).reduceByKey {
|
|
|
|
+// case ((c1, s1), (c2, s2)) =>
|
|
|
|
+// (c1 + c2, (s1 + s2))
|
|
|
|
+// }.map {
|
|
|
|
+// case ((vid, label), (count, sumScore)) =>
|
|
|
|
+// (vid, label, count, sumScore, sumScore / count)
|
|
|
|
+// }.collect().sortBy(_._1).map(_.productIterator.mkString("\t")).foreach(println)
|
|
|
|
|
|
}
|
|
}
|
|
|
|
|