|
@@ -26,9 +26,7 @@ public class DNNModel implements Model {
|
|
|
Predictor predictor = Predictor.clonePaddlePredictor(sourcePredictor);
|
|
|
String inNames = predictor.getInputNameById(0);
|
|
|
Tensor inHandle = predictor.getInputHandle(inNames);
|
|
|
-
|
|
|
- //inHandle.reshape(39, new int[]{});
|
|
|
-
|
|
|
+ log.info("predictor2 inNames={}", inNames);
|
|
|
float[] inData = new float[39];
|
|
|
inHandle.copyFromCpu(inData);
|
|
|
predictor.run();
|
|
@@ -38,7 +36,7 @@ public class DNNModel implements Model {
|
|
|
float[] outData = new float[outHandle.getSize()];
|
|
|
outHandle.copyToCpu(outData);
|
|
|
long time2 = System.currentTimeMillis();
|
|
|
- log.info("predictor2 inNames={},outNames={},outData[0]={},outDataLen={},cost={}", inNames, outNames,outData[0],
|
|
|
+ log.info("predictor2 inNames={},outNames={},outData[0]={},outDataLen={},cost={}", inNames, outNames, outData[0],
|
|
|
outData.length,
|
|
|
(time2 - time1));
|
|
|
|