|
@@ -3,12 +3,14 @@ package com.tzld.piaoquan.recommend.model
|
|
import ml.dmlc.xgboost4j.scala.spark.XGBoostClassifier
|
|
import ml.dmlc.xgboost4j.scala.spark.XGBoostClassifier
|
|
import org.apache.commons.lang.math.NumberUtils
|
|
import org.apache.commons.lang.math.NumberUtils
|
|
import org.apache.commons.lang3.StringUtils
|
|
import org.apache.commons.lang3.StringUtils
|
|
|
|
+import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
|
|
import org.apache.spark.ml.feature.VectorAssembler
|
|
import org.apache.spark.ml.feature.VectorAssembler
|
|
import org.apache.spark.rdd.RDD
|
|
import org.apache.spark.rdd.RDD
|
|
import org.apache.spark.sql.types.{DataTypes, StructField}
|
|
import org.apache.spark.sql.types.{DataTypes, StructField}
|
|
import org.apache.spark.sql.{Dataset, Row, RowFactory, SparkSession}
|
|
import org.apache.spark.sql.{Dataset, Row, RowFactory, SparkSession}
|
|
|
|
|
|
import java.util
|
|
import java.util
|
|
|
|
+import scala.io.Source
|
|
|
|
|
|
object train_01_xgb_ad_20240808{
|
|
object train_01_xgb_ad_20240808{
|
|
def main(args: Array[String]): Unit = {
|
|
def main(args: Array[String]): Unit = {
|
|
@@ -17,10 +19,26 @@ object train_01_xgb_ad_20240808{
|
|
.appName(this.getClass.getName)
|
|
.appName(this.getClass.getName)
|
|
.getOrCreate()
|
|
.getOrCreate()
|
|
val sc = spark.sparkContext
|
|
val sc = spark.sparkContext
|
|
- val features = Array("cpa", "b2_12h_ctr", "b2_12h_ctcvr", "b2_12h_cvr", "b2_12h_conver", "b2_12h_click", "b2_12h_conver*log(view)", "b2_12h_conver*ctcvr", "b2_7d_ctr", "b2_7d_ctcvr", "b2_7d_cvr", "b2_7d_conver", "b2_7d_click", "b2_7d_conver*log(view)", "b2_7d_conver*ctcvr")
|
|
|
|
|
|
+// val features = Array("cpa", "b2_12h_ctr", "b2_12h_ctcvr", "b2_12h_cvr", "b2_12h_conver", "b2_12h_click", "b2_12h_conver*log(view)", "b2_12h_conver*ctcvr", "b2_7d_ctr", "b2_7d_ctcvr", "b2_7d_cvr", "b2_7d_conver", "b2_7d_click", "b2_7d_conver*log(view)", "b2_7d_conver*ctcvr")
|
|
|
|
+
|
|
|
|
+ val loader = getClass.getClassLoader
|
|
|
|
+ val resourceUrl = loader.getResource("20240703_ad_feature_name.txt")
|
|
|
|
+ val content =
|
|
|
|
+ if (resourceUrl != null) {
|
|
|
|
+ val content = Source.fromURL(resourceUrl).getLines().mkString("\n")
|
|
|
|
+ Source.fromURL(resourceUrl).close()
|
|
|
|
+ content
|
|
|
|
+ } else {
|
|
|
|
+ ""
|
|
|
|
+ }
|
|
|
|
+ println(content)
|
|
|
|
+ val features = content.split("\n")
|
|
|
|
+ .map(r => r.replace(" ", "").replaceAll("\n", ""))
|
|
|
|
+ .filter(r => r.nonEmpty)
|
|
|
|
+
|
|
|
|
|
|
val trainData = createData(
|
|
val trainData = createData(
|
|
- sc.textFile("/dw/recommend/model/33_ad_train_data_v4/20240726/part-00099.gz"),
|
|
|
|
|
|
+ sc.textFile("/dw/recommend/model/33_ad_train_data_v4/20240724"),
|
|
features
|
|
features
|
|
)
|
|
)
|
|
println("train data size:" + trainData.count())
|
|
println("train data size:" + trainData.count())
|
|
@@ -32,26 +50,29 @@ object train_01_xgb_ad_20240808{
|
|
val trainDataSet: Dataset[Row] = spark.createDataFrame(trainData, schema)
|
|
val trainDataSet: Dataset[Row] = spark.createDataFrame(trainData, schema)
|
|
val vectorAssembler = new VectorAssembler().setInputCols(features).setOutputCol("features")
|
|
val vectorAssembler = new VectorAssembler().setInputCols(features).setOutputCol("features")
|
|
val xgbInput = vectorAssembler.transform(trainDataSet).select("features","label")
|
|
val xgbInput = vectorAssembler.transform(trainDataSet).select("features","label")
|
|
- val xgbParam = Map("eta" -> 0.01f,
|
|
|
|
- "max_depth" -> 5,
|
|
|
|
- "objective" -> "binary:logistic",
|
|
|
|
- "num_class" -> 3)
|
|
|
|
|
|
+// val xgbParam = Map("eta" -> 0.01f,
|
|
|
|
+// "max_depth" -> 5,
|
|
|
|
+// "objective" -> "binary:logistic",
|
|
|
|
+// "num_class" -> 3)
|
|
val xgbClassifier = new XGBoostClassifier()
|
|
val xgbClassifier = new XGBoostClassifier()
|
|
.setEta(0.01f)
|
|
.setEta(0.01f)
|
|
.setMissing(0.0f)
|
|
.setMissing(0.0f)
|
|
.setMaxDepth(5)
|
|
.setMaxDepth(5)
|
|
- .setNumRound(100)
|
|
|
|
|
|
+ .setNumRound(1000)
|
|
|
|
+ .setSubsample(0.8)
|
|
|
|
+ .setColsampleBytree(0.8)
|
|
|
|
+ .setScalePosWeight(1)
|
|
.setObjective("binary:logistic")
|
|
.setObjective("binary:logistic")
|
|
.setEvalMetric("auc")
|
|
.setEvalMetric("auc")
|
|
.setFeaturesCol("features")
|
|
.setFeaturesCol("features")
|
|
.setLabelCol("label")
|
|
.setLabelCol("label")
|
|
- .setNthread(1)
|
|
|
|
|
|
+ .setNthread(8)
|
|
.setNumWorkers(1)
|
|
.setNumWorkers(1)
|
|
val model = xgbClassifier.fit(xgbInput)
|
|
val model = xgbClassifier.fit(xgbInput)
|
|
|
|
|
|
|
|
|
|
val testData = createData(
|
|
val testData = createData(
|
|
- sc.textFile("/dw/recommend/model/33_ad_train_data_v4/20240726/part-00098.gz"),
|
|
|
|
|
|
+ sc.textFile("/dw/recommend/model/33_ad_train_data_v4/20240725"),
|
|
features
|
|
features
|
|
)
|
|
)
|
|
val testDataSet = spark.createDataFrame(testData, schema)
|
|
val testDataSet = spark.createDataFrame(testData, schema)
|
|
@@ -63,6 +84,14 @@ object train_01_xgb_ad_20240808{
|
|
(r.get(0), r.get(1), r.get(2), r.get(3), r.get(4)).productIterator.mkString("\t")
|
|
(r.get(0), r.get(1), r.get(2), r.get(3), r.get(4)).productIterator.mkString("\t")
|
|
})
|
|
})
|
|
saveData.repartition(1).saveAsTextFile("/dw/recommend/model/checkpoint_xgbtest")
|
|
saveData.repartition(1).saveAsTextFile("/dw/recommend/model/checkpoint_xgbtest")
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ val evaluator = new BinaryClassificationEvaluator()
|
|
|
|
+ .setLabelCol("label")
|
|
|
|
+ .setRawPredictionCol("probability")
|
|
|
|
+ .setMetricName("areaUnderROC")
|
|
|
|
+ val auc = evaluator.evaluate(predictions.select("label", "probability"))
|
|
|
|
+ println("zhangbo:auc:" + auc)
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|