zhangbo 8 месяцев назад
Родитель
Сommit
2e55eba4fd

+ 59 - 52
recommend-model-produce/src/main/scala/com/tzld/piaoquan/recommend/model/train_01_xgb_ad_20240808.scala

@@ -1,5 +1,6 @@
 package com.tzld.piaoquan.recommend.model
 
+import com.tzld.piaoquan.recommend.model.produce.util.CompressUtil
 import ml.dmlc.xgboost4j.scala.spark.XGBoostClassifier
 import org.apache.commons.lang.math.NumberUtils
 import org.apache.commons.lang3.StringUtils
@@ -12,7 +13,6 @@ import org.apache.spark.sql.{Dataset, Row, RowFactory, SparkSession}
 
 import scala.collection.JavaConversions._
 import java.util
-import scala.collection.mutable.ArrayBuffer
 import scala.io.Source
 
 object train_01_xgb_ad_20240808{
@@ -26,7 +26,7 @@ object train_01_xgb_ad_20240808{
     val param = ParamUtils.parseArgs(args)
     val featureFile = param.getOrElse("featureFile", "20240703_ad_feature_name.txt")
     val trainPath = param.getOrElse("trainPath", "/dw/recommend/model/33_ad_train_data_v4/20240724")
-    val testPath = param.getOrElse("testPath", "/dw/recommend/model/33_ad_train_data_v4/20240725")
+    val testPath = param.getOrElse("testPath", "")
     val savePath = param.getOrElse("savePath", "/dw/recommend/model/34_ad_predict_data/")
     val featureFilter = param.getOrElse("featureFilter", "XXXXXX").split(",")
     val eta = param.getOrElse("eta", "0.01").toDouble
@@ -37,6 +37,8 @@ object train_01_xgb_ad_20240808{
     val func_object = param.getOrElse("func_object", "binary:logistic")
     val func_metric = param.getOrElse("func_metric", "auc")
     val repartition = param.getOrElse("repartition", "20").toInt
+    val modelPath = param.getOrElse("modelPath", "/root/zhangbo/recommend-model/recommend-model-produce/models/")
+    val modelFile = param.getOrElse("modelFile", "model.tar.gz")
 
     val loader = getClass.getClassLoader
     val resourceUrl = loader.getResource(featureFile)
@@ -63,8 +65,6 @@ object train_01_xgb_ad_20240808{
 
     var fields = Array(
       DataTypes.createStructField("label", DataTypes.IntegerType, true)
-//      DataTypes.createStructField("logKey", DataTypes.IntegerType, true)
-
     ) ++ features.map(f => DataTypes.createStructField(f, DataTypes.DoubleType, true))
 
     fields = fields ++ Array(
@@ -74,10 +74,10 @@ object train_01_xgb_ad_20240808{
     val trainDataSet: Dataset[Row] = spark.createDataFrame(trainData, schema)
     val vectorAssembler = new VectorAssembler().setInputCols(features).setOutputCol("features")
     val xgbInput = vectorAssembler.transform(trainDataSet).select("features","label")
-//    val xgbParam = Map("eta" -> 0.01f,
-//      "max_depth" -> 5,
-//      "objective" -> "binary:logistic",
-//      "num_class" -> 3)
+    //    val xgbParam = Map("eta" -> 0.01f,
+    //      "max_depth" -> 5,
+    //      "objective" -> "binary:logistic",
+    //      "num_class" -> 3)
     val xgbClassifier = new XGBoostClassifier()
       .setEta(eta)
       .setGamma(gamma)
@@ -93,56 +93,63 @@ object train_01_xgb_ad_20240808{
       .setLabelCol("label")
       .setNthread(1)
       .setNumWorkers(num_worker)
-  .setSeed(2024)
-  .setMinChildWeight(1)
+      .setSeed(2024)
+      .setMinChildWeight(1)
     val model = xgbClassifier.fit(xgbInput)
 
 
-    val testData = createData4Ad(
-      sc.textFile(testPath),
-      features
-    )
-    val testDataSet = spark.createDataFrame(testData, schema)
-    val testDataSetTrans = vectorAssembler.transform(testDataSet).select("features","label", "logKey")
-    val predictions = model.transform(testDataSetTrans)
-//     [label, features, probability, prediction, rawPrediction]
-    println("zhangbo:columns:" + predictions.columns.mkString(","))
-    val saveData = predictions.select("label", "rawPrediction", "probability", "logKey").rdd
-      .map(r =>{
-        (r.get(0), r.get(1), r.get(2), r.get(3)).productIterator.mkString("\t")
-    })
-    val hdfsPath = savePath
-    if (hdfsPath.nonEmpty && hdfsPath.startsWith("/dw/recommend/model/")) {
-      println("删除路径并开始数据写入:" + hdfsPath)
-      MyHdfsUtils.delete_hdfs_path(hdfsPath)
-      saveData.repartition(repartition).saveAsTextFile(hdfsPath, classOf[GzipCodec])
-    } else {
-      println("路径不合法,无法写入:" + hdfsPath)
+    if(modelPath.nonEmpty && modelFile.nonEmpty){
+      val modelPathTmp = modelPath + "/tmp"
+      model.write.overwrite.save("file://" + modelPathTmp)
+      val gzPath = modelPath + "/" + modelFile
+      CompressUtil.compressDirectoryToGzip(modelPath, gzPath)
     }
 
+    if (testPath.nonEmpty){
+      val testData = createData4Ad(
+        sc.textFile(testPath),
+        features
+      )
+      val testDataSet = spark.createDataFrame(testData, schema)
+      val testDataSetTrans = vectorAssembler.transform(testDataSet).select("features", "label", "logKey")
+      val predictions = model.transform(testDataSetTrans)
+
+      println("zhangbo:columns:" + predictions.columns.mkString(","))//[label, features, probability, prediction, rawPrediction]
+      val saveData = predictions.select("label", "rawPrediction", "probability", "logKey").rdd
+        .map(r => {
+          (r.get(0), r.get(1), r.get(2), r.get(3)).productIterator.mkString("\t")
+        })
+      val hdfsPath = savePath
+      if (hdfsPath.nonEmpty && hdfsPath.startsWith("/dw/recommend/model/")) {
+        println("删除路径并开始数据写入:" + hdfsPath)
+        MyHdfsUtils.delete_hdfs_path(hdfsPath)
+        saveData.repartition(repartition).saveAsTextFile(hdfsPath, classOf[GzipCodec])
+      } else {
+        println("路径不合法,无法写入:" + hdfsPath)
+      }
 
-
-    val evaluator = new BinaryClassificationEvaluator()
-      .setLabelCol("label")
-      .setRawPredictionCol("probability")
-      .setMetricName("areaUnderROC")
-    val auc = evaluator.evaluate(predictions.select("label", "probability"))
-    println("zhangbo:auc:" + auc)
-
-    // 统计分cid的分数
-    sc.textFile(hdfsPath).map(r=>{
-      val rList = r.split("\t")
-      val cid = rList(3)
-      val score = rList(2).replace("[", "").replace("]", "")
-        .split(",")(1).toDouble
-      val label = rList(0).toDouble
-      (cid, (1, label, score))
-    }).reduceByKey{
-      case (a, b) => (a._1 + b._1, a._2 + b._2, a._3 + b._3)
-    }.map{
-      case (cid, (all, zheng, scores)) =>
-        (cid, all, zheng, scores, zheng / all, scores / all)
-    }.collect().sortBy(_._1).map(_.productIterator.mkString("\t")).foreach(println)
+      val evaluator = new BinaryClassificationEvaluator()
+        .setLabelCol("label")
+        .setRawPredictionCol("probability")
+        .setMetricName("areaUnderROC")
+      val auc = evaluator.evaluate(predictions.select("label", "probability"))
+      println("zhangbo:auc:" + auc)
+
+      // 统计分cid的分数
+      sc.textFile(hdfsPath).map(r => {
+        val rList = r.split("\t")
+        val cid = rList(3)
+        val score = rList(2).replace("[", "").replace("]", "")
+          .split(",")(1).toDouble
+        val label = rList(0).toDouble
+        (cid, (1, label, score))
+      }).reduceByKey {
+        case (a, b) => (a._1 + b._1, a._2 + b._2, a._3 + b._3)
+      }.map {
+        case (cid, (all, zheng, scores)) =>
+          (cid, all, zheng, scores, zheng / all, scores / all)
+      }.collect().sortBy(_._1).map(_.productIterator.mkString("\t")).foreach(println)
+    }
 
   }