|
@@ -32,8 +32,8 @@ object train_recsys_61_xgb_nor_20241209 {
|
|
val max_depth = param.getOrElse("max_depth", "5").toInt
|
|
val max_depth = param.getOrElse("max_depth", "5").toInt
|
|
val num_round = param.getOrElse("num_round", "100").toInt
|
|
val num_round = param.getOrElse("num_round", "100").toInt
|
|
val num_worker = param.getOrElse("num_worker", "20").toInt
|
|
val num_worker = param.getOrElse("num_worker", "20").toInt
|
|
- val func_object = param.getOrElse("func_object", "reg:squarederror")
|
|
|
|
- val func_metric = param.getOrElse("func_metric", "rmse")
|
|
|
|
|
|
+ val func_object = param.getOrElse("func_object", "reg:squaredlogerror")
|
|
|
|
+ val func_metric = param.getOrElse("func_metric", "rmsle")
|
|
val repartition = param.getOrElse("repartition", "20").toInt
|
|
val repartition = param.getOrElse("repartition", "20").toInt
|
|
val modelPath = param.getOrElse("modelPath", "/dw/recommend/model/61_recsys_nor_model/model_xgb")
|
|
val modelPath = param.getOrElse("modelPath", "/dw/recommend/model/61_recsys_nor_model/model_xgb")
|
|
val modelFile = param.getOrElse("modelFile", "model_xgb_for_recsys_nor.tar.gz")
|
|
val modelFile = param.getOrElse("modelFile", "model_xgb_for_recsys_nor.tar.gz")
|