handle_rov_bak.sh 9.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202
  1. #!/bin/sh
  2. set -ex
  3. source /root/anaconda3/bin/activate py37
  4. # nohup sh handle_rov.sh > "$(date +%Y%m%d_%H%M%S)_handle_rov.log" 2>&1 &
  5. # 原始数据table name
  6. table='alg_recsys_sample_all'
  7. today="$(date +%Y%m%d)"
  8. today_early_3="$(date -d '3 days ago' +%Y%m%d)"
  9. #table='alg_recsys_sample_all_test'
  10. # 处理分区配置 推荐数据间隔一天生产,所以5日0点使用3日0-23点数据生产new模型数据
  11. begin_early_2_Str="$(date -d '2 days ago' +%Y%m%d)"
  12. end_early_2_Str="$(date -d '2 days ago' +%Y%m%d)"
  13. beginHhStr=00
  14. endHhStr=23
  15. max_hour=05
  16. max_minute=00
  17. # 各节点产出hdfs文件绝对路径
  18. # 源数据文件
  19. originDataPath=/dw/recommend/model/13_sample_data/
  20. # 特征值
  21. valueDataPath=/dw/recommend/model/14_feature_data/
  22. # 特征分桶
  23. bucketDataPath=/dw/recommend/model/16_train_data/
  24. # 模型数据路径
  25. MODEL_PATH=/root/joe/recommend-emr-dataprocess/model
  26. # 预测路径
  27. PREDICT_PATH=/root/joe/recommend-emr-dataprocess/predict
  28. # 历史线上正在使用的模型数据路径
  29. LAST_MODEL_HOME=/root/joe/model_online
  30. # 模型数据文件前缀
  31. model_name=aka8
  32. # fm模型
  33. FM_HOME=/root/sunmingze/alphaFM/bin
  34. # hadoop
  35. HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
  36. OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/zhangbo/
  37. # 0 判断上游表是否生产完成,最长等待到max_hour点
  38. # shellcheck disable=SC2154
  39. echo "$(date +%Y-%m-%d_%H-%M-%S)----------step0------------开始校验是否生产完数据,分区信息:beginStr:${begin_early_2_Str}${beginHhStr},endStr:${end_early_2_Str}${endHhStr}"
  40. while true; do
  41. python_return_code=$(python /root/joe/recommend-emr-dataprocess/qiaojialiang/checkHiveDataUtil.py --table ${table} --beginStr ${begin_early_2_Str}${beginHhStr} --endStr ${end_early_2_Str}${endHhStr})
  42. echo "python 返回值:${python_return_code}"
  43. if [ $python_return_code -eq 0 ]; then
  44. echo "Python程序返回0,校验存在数据,退出循环。"
  45. break
  46. fi
  47. echo "Python程序返回非0值,不存在数据,等待五分钟后再次调用。"
  48. sleep 300
  49. current_hour=$(date +%H)
  50. current_minute=$(date +%M)
  51. # shellcheck disable=SC2039
  52. if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
  53. echo "最长等待时间已到,失败:${current_hour}-${current_minute}"
  54. python FeishuBot.py "荐模型数据更新 \n【任务名称】:step0校验是否生产完数据\n【是否成功】:error\n【信息】:最长等待时间已到,失败:${current_hour}-${current_minute}"
  55. exit 1
  56. fi
  57. done
  58. # 1 生产原始数据
  59. echo "$(date +%Y-%m-%d_%H-%M-%S)----------step1------------开始根据${table}生产原始数据"
  60. /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  61. --class com.aliyun.odps.spark.examples.makedata_qiao.makedata_13_originData_20240705 \
  62. --master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
  63. ../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  64. tablePart:64 repartition:32 \
  65. beginStr:${begin_early_2_Str}${beginHhStr} endStr:${end_early_2_Str}${endHhStr} \
  66. savePath:${originDataPath} \
  67. table:${table}
  68. if [ $? -ne 0 ]; then
  69. echo "Spark原始样本生产任务执行失败"
  70. python FeishuBot.py "荐模型数据更新 \n【任务名称】:step1根据${table}生产原始数据\n【是否成功】:error\n【信息】:Spark原始样本生产任务执行失败"
  71. exit 1
  72. else
  73. echo "spark原始样本生产执行成功"
  74. fi
  75. # 2 特征值拼接
  76. echo "$(date +%Y-%m-%d_%H-%M-%S)----------step2------------开始特征值拼接"
  77. /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  78. --class com.aliyun.odps.spark.examples.makedata_qiao.makedata_14_valueData_20240705 \
  79. --master yarn --driver-memory 1G --executor-memory 3G --executor-cores 1 --num-executors 32 \
  80. ../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  81. readPath:${originDataPath} \
  82. savePath:${valueDataPath} \
  83. beginStr:${begin_early_2_Str} endStr:${end_early_2_Str} repartition:1000
  84. if [ $? -ne 0 ]; then
  85. echo "Spark特征值拼接处理任务执行失败"
  86. python FeishuBot.py "荐模型数据更新 \n【任务名称】:step2特征值拼接\n【是否成功】:error\n【信息】:Spark特征值拼接处理任务执行失败"
  87. exit 1
  88. else
  89. echo "spark特征值拼接处理执行成功"
  90. fi
  91. # 3 特征分桶
  92. echo "$(date +%Y-%m-%d_%H-%M-%S)----------step3------------根据特征分桶生产重打分特征数据"
  93. /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  94. --class com.aliyun.odps.spark.examples.makedata_qiao.makedata_16_bucketData_20240705 \
  95. --master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
  96. ../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  97. readPath:${valueDataPath} \
  98. savePath:${bucketDataPath} \
  99. beginStr:${begin_early_2_Str} endStr:${end_early_2_Str} repartition:1000
  100. if [ $? -ne 0 ]; then
  101. echo "Spark特征分桶处理任务执行失败"
  102. python FeishuBot.py "荐模型数据更新 \n【任务名称】:step3训练数据产出\n【是否成功】:error\n【信息】:Spark特征分桶处理任务执行失败"
  103. exit 1
  104. else
  105. echo "spark特征分桶处理执行成功"
  106. fi
  107. # 4 对比AUC 前置对比3日模型数据 与 线上模型数据效果对比,如果3日模型优于线上,更新线上模型
  108. echo "$(date +%Y-%m-%d_%H-%M-%S)----------step4------------开始对比,新:${MODEL_PATH}/${model_name}_${today_early_3}.txt,与线上online模型数据auc效果"
  109. $HADOOP fs -text ${bucketDataPath}/${begin_early_2_Str}/* | ${FM_HOME}/fm_predict -m ${LAST_MODEL_HOME}/model_online.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_online.txt
  110. $HADOOP fs -text ${bucketDataPath}/${begin_early_2_Str}/* | ${FM_HOME}/fm_predict -m ${MODEL_PATH}/${model_name}_${today_early_3}.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_new.txt
  111. online_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_online.txt | /root/sunmingze/AUC/AUC`
  112. if [ $? -ne 0 ]; then
  113. echo "推荐线上模型AUC计算失败"
  114. python FeishuBot.py "荐模型数据更新 \n【任务名称】:step4新旧模型AUC对比\n【是否成功】:error\n【信息】:推荐线上模型AUC计算失败"
  115. exit 1
  116. fi
  117. new_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_new.txt | /root/sunmingze/AUC/AUC`
  118. if [ $? -ne 0 ]; then
  119. echo "推荐新模型AUC计算失败"
  120. python FeishuBot.py "荐模型数据更新 \n【任务名称】:step4新旧模型AUC对比\n【是否成功】:error\n【信息】:推荐新模型AUC计算失败${PREDICT_PATH}/${model_name}_${today}_new.txt"
  121. exit 1
  122. fi
  123. # 4.1 对比auc数据判断是否更新线上模型
  124. if [ "$online_auc" \< "$new_auc" ]; then
  125. echo "新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  126. # 4.1.1 模型格式转换
  127. cat ${MODEL_PATH}/${model_name}_${today_early_3}.txt |
  128. awk -F " " '{
  129. if (NR == 1) {
  130. print $1"\t"$2
  131. } else {
  132. split($0, fields, " ");
  133. OFS="\t";
  134. line=""
  135. for (i = 1; i <= 10 && i <= length(fields); i++) {
  136. line = (line ? line "\t" : "") fields[i];
  137. }
  138. print line
  139. }
  140. }' > ${MODEL_PATH}/${model_name}_${today_early_3}_change.txt
  141. if [ $? -ne 0 ]; then
  142. echo "新模型文件格式转换失败"
  143. python FeishuBot.py "荐模型数据更新 \n【任务名称】:step4模型格式转换\n【是否成功】:error\n【信息】:新模型文件格式转换失败${MODEL_PATH}/${model_name}_${today_early_3}.txt"
  144. exit 1
  145. fi
  146. # 4.1.2 模型文件上传OSS
  147. online_model_path=${OSS_PATH}/${model_name}.txt
  148. $HADOOP fs -test -e ${online_model_path}
  149. if [ $? -eq 0 ]; then
  150. echo "数据存在, 先删除。"
  151. $HADOOP fs -rm -r -skipTrash ${online_model_path}
  152. else
  153. echo "数据不存在"
  154. fi
  155. $HADOOP fs -put ${MODEL_PATH}/${model_name}_${today_early_3}_change.txt ${online_model_path}
  156. if [ $? -eq 0 ]; then
  157. echo "推荐模型文件至OSS成功"
  158. else
  159. echo "推荐模型文件至OSS失败"
  160. python FeishuBot.py "荐模型数据更新 \n【任务名称】:step4模型推送oss\n【是否成功】:error\n【信息】:推荐模型文件至OSS失败${MODEL_PATH}/${model_name}_${today_early_3}_change.txt --- ${online_model_path}"
  161. exit 1
  162. fi
  163. # 4.1.3 本地保存最新的线上使用的模型,用于下一次的AUC验证
  164. cp -f ${LAST_MODEL_HOME}/model_online.txt ${LAST_MODEL_HOME}/model_online_$(date +\%Y\%m\%d).txt
  165. cp -f ${MODEL_PATH}/${model_name}_${today_early_3}.txt ${LAST_MODEL_HOME}/model_online.txt
  166. if [ $? -ne 0 ]; then
  167. echo "模型备份失败"
  168. exit 1
  169. fi
  170. python FeishuBot.py "荐模型数据更新 \n【任务名称】:step4模型更新\n【是否成功】:success\n【信息】:新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc},已更新${model_name}_${today_early_3}.txt模型}"
  171. else
  172. echo "新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  173. python FeishuBot.py "荐模型数据更新 \n【任务名称】:step4模型更新\n【是否成功】:success\n【信息】:新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}}"
  174. fi
  175. # 5 模型训练
  176. echo "$(date +%Y-%m-%d_%H-%M-%S)----------step5------------开始模型训练"
  177. $HADOOP fs -text ${bucketDataPath}/${begin_early_2_Str}/* | ${FM_HOME}/fm_train -m ${MODEL_PATH}/${model_name}_${begin_early_2_Str}.txt -dim 1,1,8 -im ${LAST_MODEL_HOME}/model_online.txt -core 8
  178. if [ $? -ne 0 ]; then
  179. echo "模型训练失败"
  180. python FeishuBot.py "荐模型数据更新 \n【任务名称】:step5模型训练\n【是否成功】:error\n【信息】:${bucketDataPath}/${begin_early_2_Str}训练失败"
  181. exit 1
  182. fi
  183. echo "$(date +%Y-%m-%d_%H-%M-%S)----------step6------------模型训练完成:${MODEL_PATH}/${model_name}_${begin_early_2_Str}.txt"