123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233 |
- #!/bin/sh
- set -x
- source /root/anaconda3/bin/activate py37
- export SPARK_HOME=/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8
- export PATH=$SPARK_HOME/bin:$PATH
- export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf
- export JAVA_HOME=/usr/lib/jvm/java-1.8.0
- # nohup sh handle_rov.sh > "$(date +%Y%m%d_%H%M%S)_handle_rov.log" 2>&1 &
- # 原始数据table name
- table='alg_recsys_sample_all'
- today="$(date +%Y%m%d)"
- today_early_3="$(date -d '3 days ago' +%Y%m%d)"
- #table='alg_recsys_sample_all_test'
- # 处理分区配置 推荐数据间隔一天生产,所以5日0点使用3日0-23点数据生产new模型数据
- begin_early_2_Str="$(date -d '2 days ago' +%Y%m%d)"
- end_early_2_Str="$(date -d '2 days ago' +%Y%m%d)"
- beginHhStr=00
- endHhStr=23
- max_hour=05
- max_minute=00
- # 各节点产出hdfs文件绝对路径
- # 源数据文件
- originDataPath=/dw/recommend/model/41_recsys_sample_data/
- # 特征值
- valueDataPath=/dw/recommend/model/14_feature_data/
- # 特征分桶
- bucketDataPath=/dw/recommend/model/43_recsys_train_data/
- # 模型数据路径
- MODEL_PATH=/root/joe/recommend-emr-dataprocess/model
- # 预测路径
- PREDICT_PATH=/root/joe/recommend-emr-dataprocess/predict
- # 历史线上正在使用的模型数据路径
- LAST_MODEL_HOME=/root/joe/model_online
- # 模型数据文件前缀
- model_name=model_nba8
- # fm模型
- FM_HOME=/root/sunmingze/alphaFM/bin
- # hadoop
- HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
- OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/zhangbo/
- #OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/qiaojialiang/
- # 0 判断上游表是否生产完成,最长等待到max_hour点
- # shellcheck disable=SC2154
- echo "$(date +%Y-%m-%d_%H-%M-%S)----------step0------------开始校验是否生产完数据,分区信息:beginStr:${begin_early_2_Str}${beginHhStr},endStr:${end_early_2_Str}${endHhStr}"
- while true; do
- python_return_code=$(python /root/joe/recommend-emr-dataprocess/qiaojialiang/checkHiveDataUtil.py --table ${table} --beginStr ${begin_early_2_Str}${beginHhStr} --endStr ${end_early_2_Str}${endHhStr})
- echo "python 返回值:${python_return_code}"
- if [ $python_return_code -eq 0 ]; then
- echo "Python程序返回0,校验存在数据,退出循环。"
- break
- fi
- echo "Python程序返回非0值,不存在数据,等待五分钟后再次调用。"
- sleep 300
- current_hour=$(date +%H)
- current_minute=$(date +%M)
- # shellcheck disable=SC2039
- if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
- echo "最长等待时间已到,失败:${current_hour}-${current_minute}"
- /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step0校验是否生产完数据\n【是否成功】:error\n【信息】:最长等待时间已到,失败:${current_hour}-${current_minute}"
- exit 1
- fi
- done
- # 1 生产原始数据
- echo "$(date +%Y-%m-%d_%H-%M-%S)----------step1------------开始根据${table}生产原始数据"
- #/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
- #--class com.aliyun.odps.spark.examples.makedata_recsys.makedata_recsys_41_originData_20240709 \
- #--master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
- #../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
- #tablePart:64 repartition:32 \
- #beginStr:${begin_early_2_Str}${beginHhStr} endStr:${end_early_2_Str}${endHhStr} \
- #savePath:${originDataPath} \
- #table:${table}
- #if [ $? -ne 0 ]; then
- # echo "Spark原始样本生产任务执行失败"
- # /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step1根据${table}生产原始数据\n【是否成功】:error\n【信息】:Spark原始样本生产任务执行失败"
- # exit 1
- #else
- # echo "spark原始样本生产执行成功"
- #fi
- /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
- --class com.aliyun.odps.spark.examples.makedata_recsys.makedata_recsys_41_originData_20240709 \
- --master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
- ../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
- tablePart:64 repartition:32 \
- beginStr:${begin_early_2_Str}00 endStr:${end_early_2_Str}09 \
- savePath:${originDataPath} \
- table:${table} &
- /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
- --class com.aliyun.odps.spark.examples.makedata_recsys.makedata_recsys_41_originData_20240709 \
- --master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
- ../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
- tablePart:64 repartition:32 \
- beginStr:${begin_early_2_Str}10 endStr:${end_early_2_Str}15 \
- savePath:${originDataPath} \
- table:${table} &
- /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
- --class com.aliyun.odps.spark.examples.makedata_recsys.makedata_recsys_41_originData_20240709 \
- --master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
- ../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
- tablePart:64 repartition:32 \
- beginStr:${begin_early_2_Str}16 endStr:${end_early_2_Str}23 \
- savePath:${originDataPath} \
- table:${table} &
- wait
- if [ $? -ne 0 ]; then
- echo "Spark原始样本生产任务执行失败"
- /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step1根据${table}生产原始数据\n【是否成功】:error\n【信息】:Spark原始样本生产任务执行失败"
- exit 1
- else
- echo "spark原始样本生产执行成功"
- fi
- # 2 特征分桶
- echo "$(date +%Y-%m-%d_%H-%M-%S)----------step2------------根据特征分桶生产重打分特征数据"
- /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
- --class com.aliyun.odps.spark.examples.makedata_recsys.makedata_recsys_43_bucketData_20240709 \
- --master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
- ../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
- readPath:${originDataPath} \
- savePath:${bucketDataPath} \
- beginStr:${begin_early_2_Str} endStr:${end_early_2_Str} repartition:500 \
- filterNames:XXXXXXXXX \
- fileName:20240609_bucket_314.txt \
- whatLabel:is_return whatApps:0,4,21,17
- if [ $? -ne 0 ]; then
- echo "Spark特征分桶处理任务执行失败"
- /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step3训练数据产出\n【是否成功】:error\n【信息】:Spark特征分桶处理任务执行失败"
- exit 1
- else
- echo "spark特征分桶处理执行成功"
- fi
- echo "$(date +%Y-%m-%d_%H-%M-%S)----------step5------------spark特征分桶处理执行成功:${begin_early_2_Str}"
- # 3 对比AUC 前置对比3日模型数据 与 线上模型数据效果对比,如果3日模型优于线上,更新线上模型
- #echo "$(date +%Y-%m-%d_%H-%M-%S)----------step3------------开始对比,新:${MODEL_PATH}/${model_name}_${today_early_3}.txt,与线上online模型数据auc效果"
- #$HADOOP fs -text ${bucketDataPath}/${begin_early_2_Str}/* | ${FM_HOME}/fm_predict -m ${LAST_MODEL_HOME}/model_online.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_online.txt
- #if [ $? -ne 0 ]; then
- # echo "推荐线上模型AUC计算失败"
- # /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step4新旧模型AUC对比\n【是否成功】:error\n【信息】:推荐线上模型AUC计算失败"
- #else
- # $HADOOP fs -text ${bucketDataPath}/${begin_early_2_Str}/* | ${FM_HOME}/fm_predict -m ${MODEL_PATH}/${model_name}_${today_early_3}.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_new.txt
- # if [ $? -ne 0 ]; then
- # echo "推荐新模型AUC计算失败"
- # /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step4新旧模型AUC对比\n【是否成功】:error\n【信息】:推荐新模型AUC计算失败${PREDICT_PATH}/${model_name}_${today}_new.txt"
- # else
- # online_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_online.txt | /root/sunmingze/AUC/AUC`
- # if [ $? -ne 0 ]; then
- # echo "推荐线上模型AUC计算失败"
- # /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step4新旧模型AUC对比\n【是否成功】:error\n【信息】:推荐线上模型AUC计算失败"
- # else
- # new_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_new.txt | /root/sunmingze/AUC/AUC`
- # if [ $? -ne 0 ]; then
- # echo "推荐新模型AUC计算失败"
- # /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step4新旧模型AUC对比\n【是否成功】:error\n【信息】:推荐新模型AUC计算失败${PREDICT_PATH}/${model_name}_${today}_new.txt"
- # else
- # # 4.1 对比auc数据判断是否更新线上模型
- # if [ "$online_auc" \< "$new_auc" ]; then
- # echo "新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
- # # 4.1.1 模型格式转换
- # cat ${MODEL_PATH}/${model_name}_${today_early_3}.txt |
- # awk -F " " '{
- # if (NR == 1) {
- # print $1"\t"$2
- # } else {
- # split($0, fields, " ");
- # OFS="\t";
- # line=""
- # for (i = 1; i <= 10 && i <= length(fields); i++) {
- # line = (line ? line "\t" : "") fields[i];
- # }
- # print line
- # }
- # }' > ${MODEL_PATH}/${model_name}_${today_early_3}_change.txt
- # if [ $? -ne 0 ]; then
- # echo "新模型文件格式转换失败"
- # /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step4模型格式转换\n【是否成功】:error\n【信息】:新模型文件格式转换失败${MODEL_PATH}/${model_name}_${today_early_3}.txt"
- # else
- # # 4.1.2 模型文件上传OSS
- # online_model_path=${OSS_PATH}/${model_name}.txt
- # $HADOOP fs -test -e ${online_model_path}
- # if [ $? -eq 0 ]; then
- # echo "数据存在, 先删除。"
- # $HADOOP fs -rm -r -skipTrash ${online_model_path}
- # else
- # echo "数据不存在"
- # fi
- # $HADOOP fs -put ${MODEL_PATH}/${model_name}_${today_early_3}_change.txt ${online_model_path}
- # if [ $? -eq 0 ]; then
- # echo "推荐模型文件至OSS成功"
- # # 4.1.3 本地保存最新的线上使用的模型,用于下一次的AUC验证
- # cp -f ${LAST_MODEL_HOME}/model_online.txt ${LAST_MODEL_HOME}/model_online_$(date +\%Y\%m\%d).txt
- # cp -f ${MODEL_PATH}/${model_name}_${today_early_3}.txt ${LAST_MODEL_HOME}/model_online.txt
- # if [ $? -ne 0 ]; then
- # echo "模型备份失败"
- # fi
- # /root/anaconda3/bin/python monitor_util.py --level info --msg "荐模型数据更新 \n【任务名称】:step4模型更新\n【是否成功】:success\n【信息】:新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc},已更新${model_name}_${today_early_3}.txt模型}"
- # else
- # echo "推荐模型文件至OSS失败"
- # /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step4模型推送oss\n【是否成功】:error\n【信息】:推荐模型文件至OSS失败${MODEL_PATH}/${model_name}_${today_early_3}_change.txt --- ${online_model_path}"
- # fi
- # fi
- # else
- # echo "新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
- # /root/anaconda3/bin/python monitor_util.py --level info --msg "荐模型数据更新 \n【任务名称】:step4模型更新\n【是否成功】:success\n【信息】:新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc},${MODEL_PATH}/${model_name}_${today_early_3}.txt"
- # fi
- # fi
- # fi
- # fi
- #fi
- # 4 模型训练
- #echo "$(date +%Y-%m-%d_%H-%M-%S)----------step4------------开始模型训练,增量训练:${MODEL_PATH}/${model_name}_${today_early_3}.txt"
- ##$HADOOP fs -text ${bucketDataPath}/${begin_early_2_Str}/* | ${FM_HOME}/fm_train -m ${MODEL_PATH}/${model_name}_${begin_early_2_Str}.txt -dim 1,1,8 -im ${LAST_MODEL_HOME}/model_online.txt -core 8
- #$HADOOP fs -text ${bucketDataPath}/${begin_early_2_Str}/* | ${FM_HOME}/fm_train -m ${MODEL_PATH}/${model_name}_${begin_early_2_Str}.txt -dim 1,1,8 -im ${MODEL_PATH}/${model_name}_${today_early_3}.txt -core 8
- #if [ $? -ne 0 ]; then
- # echo "模型训练失败"
- # /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step5模型训练\n【是否成功】:error\n【信息】:${bucketDataPath}/${begin_early_2_Str}训练失败"
- #fi
- #echo "$(date +%Y-%m-%d_%H-%M-%S)----------step5------------模型训练完成:${MODEL_PATH}/${model_name}_${begin_early_2_Str}.txt"
|