01_ad_model_update_everyday.sh 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196
  1. #!/bin/sh
  2. set -x
  3. # 0 全局变量/参数
  4. originDataSavePath=/dw/recommend/model/31_ad_sample_data_v3_auto/
  5. bucketFeatureSavePath=/dw/recommend/model/33_ad_train_data_v3_auto/
  6. model_name=model_bkb8_v3
  7. today="$(date +%Y%m%d)"
  8. today_early_1="$(date -d '1 days ago' +%Y%m%d)"
  9. LAST_MODEL_HOME=/root/zhaohp/model_online
  10. MODEL_PATH=/root/zhaohp/recommend-emr-dataprocess/model
  11. PREDICT_PATH=/root/zhaohp/recommend-emr-dataprocess/predict
  12. HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
  13. FM_HOME=/root/sunmingze/alphaFM
  14. OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/zhangbo/
  15. max_hour=17
  16. max_minute=00
  17. export SPARK_HOME=/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8
  18. export PATH=$SPARK_HOME/bin:$PATH
  19. export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf
  20. export JAVA_HOME=/usr/lib/jvm/java-1.8.0
  21. start_time=$(date "+%Y-%m-%d %H:%M:%S")
  22. elapsed=0
  23. LOG_PREFIX=广告模型自动更新任务
  24. # 1 判断依赖的数据表是否生产完成
  25. source /root/anaconda3/bin/activate py37
  26. while true; do
  27. python_return_code=$(python ad/ad_utils.py --excute_program check_ad_origin_hive --partition ${today} --hh 10)
  28. elapsed=$(($(date +%s -d "${start_time}") - $(date +%s -d "+%Y-%m-%d %H:%M:%S")))
  29. if [ "$python_return_code" -eq 0 ]; then
  30. break
  31. fi
  32. echo "Python程序返回非0值,等待五分钟后再次调用。"
  33. sleep 300
  34. current_hour=$(date +%H)
  35. current_minute=$(date +%M)
  36. if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
  37. msg="大数据数据生产校验失败 \n\t分区: ${today}10"
  38. echo -e "$LOG_PREFIX -- 大数据数据生产校验 -- ${msg}"
  39. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  40. exit 1
  41. fi
  42. done
  43. echo "$LOG_PREFIX -- 大数据数据生产校验 -- 大数据数据生产校验通过: 耗时 $elapsed"
  44. # 2 原始特征生成
  45. /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  46. --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_31_originData_20240620 \
  47. --master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
  48. ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  49. tablePart:64 repartition:16 \
  50. beginStr:${today_early_1}00 endStr:${today}10 \
  51. savePath:${originDataSavePath} \
  52. table:alg_recsys_ad_sample_all filterHours:00,01,02,03,04,05,06,07 \
  53. idDefaultValue:0.01
  54. elapsed=$(($(date +%s -d "${start_time}") - $(date +%s -d "+%Y-%m-%d %H:%M:%S")))
  55. if [ $? -ne 0 ]; then
  56. msg="Spark原始样本生产任务执行失败"
  57. echo "$LOG_PREFIX -- 原始样本生产 -- $msg: 耗时 $elapsed"
  58. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  59. exit 1
  60. else
  61. echo "$LOG_PREFIX -- 原始样本生产 -- Spark原始样本生产任务执行成功: 耗时 $elapsed"
  62. fi
  63. # 3 特征分桶
  64. /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  65. --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_33_bucketData_20240622 \
  66. --master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
  67. ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  68. beginStr:${today_early_1} endStr:${today} repartition:100 \
  69. filterNames:adid_,targeting_conversion_ \
  70. readPath:${originDataSavePath} \
  71. savePath:${bucketFeatureSavePath}
  72. elapsed=$(($(date +%s -d "${start_time}") - $(date +%s -d "+%Y-%m-%d %H:%M:%S")))
  73. if [ $? -ne 0 ]; then
  74. msg="Spark特征分桶处理任务执行失败"
  75. echo "$LOG_PREFIX -- 特征分桶处理任务 -- $msg: 耗时 $elapsed"
  76. /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg}
  77. exit 1
  78. else
  79. echo "$LOG_PREFIX -- 特征分桶处理任务 -- spark特征分桶处理执行成功: 耗时 $elapsed"
  80. fi
  81. # 4 模型训练
  82. $HADOOP fs -text ${bucketFeatureSavePath}/${today_early_1}/* | ${FM_HOME}/bin/fm_train -m ${MODEL_PATH}/${model_name}_${today_early_1}.txt -dim 1,1,8 -im ${LAST_MODEL_HOME}/model_online.txt -core 8
  83. if [ $? -ne 0 ]; then
  84. echo "模型训练失败"
  85. /root/anaconda3/bin/python ad/ad_monitor_util.py "广告模型训练失败"
  86. exit 1
  87. fi
  88. # 5 对比AUC
  89. $HADOOP fs -text ${bucketFeatureSavePath}/${today}/* | ${FM_HOME}/bin/fm_predict -m ${LAST_MODEL_HOME}/model_online.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_online.txt
  90. $HADOOP fs -text ${bucketFeatureSavePath}/${today}/* | ${FM_HOME}/bin/fm_predict -m ${MODEL_PATH}/${model_name}_${today_early_1}.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_new.txt
  91. # 5.1 计算线上模型的AUC
  92. online_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_online.txt | /root/sunmingze/AUC/AUC`
  93. if [ $? -ne 0 ]; then
  94. echo "线上模型AUC计算失败"
  95. /root/anaconda3/bin/python ad/ad_monitor_util.py "线上模型AUC计算失败"
  96. exit 1
  97. fi
  98. # 5.2 计算新模型的AUC
  99. new_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_new.txt | /root/sunmingze/AUC/AUC`
  100. if [ $? -ne 0 ]; then
  101. echo "新模型AUC计算失败"
  102. /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型AUC计算失败"
  103. exit 1
  104. fi
  105. echo "AUC比对: 线上模型的AUC: ${online_auc}, 新模型的AUC: ${new_auc}"
  106. # 5.3 计算新模型与线上模型的AUC差值
  107. auc_diff=$(echo "$online_auc - $new_auc" | bc -l)
  108. # 5.4 获取差值的绝对值
  109. auc_diff_abs=$(echo "sqrt(($auc_diff)^2)" | bc -l)
  110. # 5.5 如果差值的绝对值小于0.005且新模型的AUC大于0.73, 则更新模型
  111. if (( $(echo "${online_auc} <= ${new_auc}" | bc -l) )); then
  112. echo "新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  113. /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  114. elif (( $(echo "$auc_diff_abs < 0.005" | bc -l) )) && (( $(echo "$new_auc >= 0.73" | bc -l) )); then
  115. echo "新模型与线上模型差值小于阈值0.005: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}, 差值为: $auc_diff_abs"
  116. /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型与线上模型差值小于阈值0.005: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}, 差值为: $auc_diff_abs"
  117. else
  118. echo "新模型与线上模型差值大于等于阈值0.005: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}, 差值为: $auc_diff_abs"
  119. /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型与线上模型差值大于等于阈值0.005: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}, 差值为: $auc_diff_abs"
  120. exit 1
  121. fi
  122. # 6 模型格式转换
  123. cat ${MODEL_PATH}/${model_name}_${today_early_1}.txt |
  124. awk -F " " '{
  125. if (NR == 1) {
  126. print $1"\t"$2
  127. } else {
  128. split($0, fields, " ");
  129. OFS="\t";
  130. line=""
  131. for (i = 1; i <= 10 && i <= length(fields); i++) {
  132. line = (line ? line "\t" : "") fields[i];
  133. }
  134. print line
  135. }
  136. }' > ${MODEL_PATH}/${model_name}_${today_early_1}_change.txt
  137. if [ $? -ne 0 ]; then
  138. echo "新模型文件格式转换失败"
  139. /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型文件格式转换失败"
  140. exit 1
  141. fi
  142. # 7 模型文件上传OSS
  143. online_model_path=${OSS_PATH}/${model_name}.txt
  144. $HADOOP fs -test -e ${online_model_path}
  145. if [ $? -eq 0 ]; then
  146. echo "数据存在, 先删除。"
  147. $HADOOP fs -rm -r -skipTrash ${online_model_path}
  148. else
  149. echo "数据不存在"
  150. fi
  151. $HADOOP fs -put ${MODEL_PATH}/${model_name}_${today_early_1}_change.txt ${online_model_path}
  152. if [ $? -eq 0 ]; then
  153. echo "推荐模型文件至OSS成功"
  154. else
  155. echo "推荐模型文件至OSS失败"
  156. /root/anaconda3/bin/python ad/ad_monitor_util.py "推荐模型文件至OSS失败"
  157. exit 1
  158. fi
  159. # 7.3 本地保存最新的线上使用的模型,用于下一次的AUC验证
  160. cp -f ${LAST_MODEL_HOME}/model_online.txt ${LAST_MODEL_HOME}/model_online_$(date +\%Y\%m\%d).txt
  161. cp -f ${MODEL_PATH}/${model_name}_${today_early_1}.txt ${LAST_MODEL_HOME}/model_online.txt
  162. if [ $? -ne 0 ]; then
  163. echo "模型备份失败"
  164. /root/anaconda3/bin/python ad/ad_monitor_util.py "模型备份失败 - 最新模型地址: ${MODEL_PATH}/${model_name}_${today_early_1}.txt"
  165. exit 1
  166. fi
  167. # 32 16 * * * cd /root/zhangbo/recommend-emr-dataprocess && /bin/sh ./ad/01_ad_model_update_everyday.sh > logs/01_update_eventday$(date +\%Y-\%m-\%d_\%H).log 2>&1