01_ad_model_update_everyday.sh 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266
  1. #!/bin/sh
  2. set -x
  3. # 0 全局变量/参数
  4. originDataSavePath=/dw/recommend/model/31_ad_sample_data_v3_auto/
  5. bucketFeatureSavePath=/dw/recommend/model/33_ad_train_data_v3_auto/
  6. model_name=model_bkb8_v3
  7. today="$(date +%Y%m%d)"
  8. today_early_1="$(date -d '1 days ago' +%Y%m%d)"
  9. LAST_MODEL_HOME=/root/zhaohp/model_online
  10. MODEL_PATH=/root/zhaohp/recommend-emr-dataprocess/model
  11. PREDICT_PATH=/root/zhaohp/recommend-emr-dataprocess/predict
  12. HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
  13. FM_HOME=/root/sunmingze/alphaFM
  14. OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/zhangbo/
  15. max_hour=17
  16. max_minute=00
  17. export SPARK_HOME=/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8
  18. export PATH=$SPARK_HOME/bin:$PATH
  19. export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf
  20. export JAVA_HOME=/usr/lib/jvm/java-1.8.0
  21. start_time=$(date "+%Y-%m-%d %H:%M:%S")
  22. elapsed=0
  23. LOG_PREFIX=广告模型自动更新任务
  24. # 1 判断依赖的数据表是否生产完成
  25. source /root/anaconda3/bin/activate py37
  26. while true; do
  27. python_return_code=$(python ad/ad_utils.py --excute_program check_ad_origin_hive --partition ${today} --hh 10)
  28. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  29. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  30. if [ "$python_return_code" -eq 0 ]; then
  31. break
  32. fi
  33. echo "Python程序返回非0值,等待五分钟后再次调用。"
  34. sleep 300
  35. current_hour=$(date +%H)
  36. current_minute=$(date +%M)
  37. if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
  38. msg="大数据数据生产校验失败 \n\t分区: ${today}10"
  39. echo -e "$LOG_PREFIX -- 大数据数据生产校验 -- ${msg}"
  40. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  41. exit 1
  42. fi
  43. done
  44. echo "$LOG_PREFIX -- 大数据数据生产校验 -- 大数据数据生产校验通过: 耗时 $elapsed"
  45. ## 2 原始特征生成
  46. #step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  47. #/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  48. #--class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_31_originData_20240620 \
  49. #--master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
  50. #./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  51. #tablePart:64 repartition:16 \
  52. #beginStr:${today_early_1}00 endStr:${today}10 \
  53. #savePath:${originDataSavePath} \
  54. #table:alg_recsys_ad_sample_all filterHours:00,01,02,03,04,05,06,07 \
  55. #idDefaultValue:0.01
  56. #
  57. #step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  58. #step_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
  59. #if [ $? -ne 0 ]; then
  60. # msg="Spark原始样本生产任务执行失败"
  61. # echo "$LOG_PREFIX -- 原始样本生产 -- $msg: 耗时 $step_elapsed"
  62. # elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  63. # /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  64. # exit 1
  65. #fi
  66. #echo "$LOG_PREFIX -- 原始样本生产 -- Spark原始样本生产任务执行成功: 耗时 $step_elapsed"
  67. #
  68. #
  69. #
  70. #
  71. ## 3 特征分桶
  72. #step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  73. #/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  74. #--class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_33_bucketData_20240622 \
  75. #--master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
  76. #./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  77. #beginStr:${today_early_1} endStr:${today} repartition:100 \
  78. #filterNames:adid_,targeting_conversion_ \
  79. #readPath:${originDataSavePath} \
  80. #savePath:${bucketFeatureSavePath}
  81. #
  82. #step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  83. #step_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
  84. #if [ $? -ne 0 ]; then
  85. # msg="Spark特征分桶处理任务执行失败"
  86. # echo "$LOG_PREFIX -- 特征分桶处理任务 -- $msg: 耗时 $step_elapsed"
  87. # elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  88. # /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg}
  89. # exit 1
  90. #fi
  91. #echo "$LOG_PREFIX -- 特征分桶处理任务 -- spark特征分桶处理执行成功: 耗时 $step_elapsed"
  92. # 4 模型训练
  93. step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  94. $HADOOP fs -text ${bucketFeatureSavePath}/${today_early_1}/* | ${FM_HOME}/bin/fm_train -m ${MODEL_PATH}/${model_name}_${today_early_1}.txt -dim 1,1,8 -im ${LAST_MODEL_HOME}/model_online.txt -core 8
  95. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  96. step_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
  97. if [ $? -ne 0 ]; then
  98. msg "模型训练失败"
  99. echo "$LOG_PREFIX -- 原始样本生产 -- $msg: 耗时 $step_elapsed"
  100. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  101. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  102. exit 1
  103. fi
  104. echo "$LOG_PREFIX -- 原始样本生产 -- 模型训练完成: 耗时 $step_elapsed"
  105. # 5 对比AUC
  106. step5_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  107. step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  108. # 5.1 计算线上模型的AUC
  109. $HADOOP fs -text ${bucketFeatureSavePath}/${today}/* | ${FM_HOME}/bin/fm_predict -m ${LAST_MODEL_HOME}/model_online.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_online.txt
  110. online_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_online.txt | /root/sunmingze/AUC/AUC`
  111. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  112. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
  113. if [ $? -ne 0 ]; then
  114. msg="线上模型AUC计算失败"
  115. echo "$LOG_PREFIX -- 线上模型AUC计算 -- $msg: 耗时 $step_elapsed"
  116. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  117. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  118. exit 1
  119. fi
  120. echo "$LOG_PREFIX -- 线上模型AUC计算 -- 线上模型AUC计算完成: 耗时 $step_elapsed"
  121. # 5.2 计算新模型的AUC
  122. step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  123. $HADOOP fs -text ${bucketFeatureSavePath}/${today}/* | ${FM_HOME}/bin/fm_predict -m ${MODEL_PATH}/${model_name}_${today_early_1}.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_new.txt
  124. new_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_new.txt | /root/sunmingze/AUC/AUC`
  125. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  126. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
  127. if [ $? -ne 0 ]; then
  128. msg="新模型AUC计算失败"
  129. echo "$LOG_PREFIX -- 新模型AUC计算 -- $msg: 耗时 $step_elapsed"
  130. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  131. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  132. exit 1
  133. fi
  134. echo "$LOG_PREFIX -- 新模型AUC计算 -- 新模型AUC计算完成: 耗时 $step_elapsed"
  135. echo "AUC比对: 线上模型的AUC: ${online_auc}, 新模型的AUC: ${new_auc}"
  136. # 5.3 计算新模型与线上模型的AUC差值的绝对值
  137. auc_diff=$(echo "$online_auc - $new_auc" | bc -l)
  138. auc_diff_abs=$(echo "sqrt(($auc_diff)^2)" | bc -l)
  139. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  140. step5_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step5_start_time")))
  141. # 5.4 如果差值的绝对值小于0.005且新模型的AUC大于0.73, 则更新模型
  142. if (( $(echo "${online_auc} <= ${new_auc}" | bc -l) )); then
  143. msg="新模型优于线上模型 \n\t线上模型AUC: ${online_auc} \n\t新模型AUC: ${new_auc}"
  144. echo -e "$LOG_PREFIX -- AUC对比 -- $msg: 耗时 $step5_elapsed"
  145. elif (( $(echo "$auc_diff_abs < 0.005" | bc -l) )) && (( $(echo "$new_auc >= 0.73" | bc -l) )); then
  146. msg="新模型与线上模型差值小于阈值0.005 \n\t线上模型AUC: ${online_auc} \n\t新模型AUC: ${new_auc} \n\t差值为: $auc_diff_abs"
  147. echo -e "$LOG_PREFIX -- AUC对比 -- $msg: 耗时 $step5_elapsed"
  148. else
  149. msg="新模型与线上模型差值大于等于阈值0.005 \n\t线上模型AUC: ${online_auc} \n\t新模型AUC: ${new_auc} \n\t差值为: $auc_diff_abs"
  150. echo -e "$LOG_PREFIX -- AUC对比 -- $msg: 耗时 $step5_elapsed"
  151. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  152. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  153. exit 1
  154. fi
  155. # 6 模型格式转换
  156. step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  157. change_txt_path=${MODEL_PATH}/${model_name}_${today_early_1}_change.txt
  158. cat ${MODEL_PATH}/${model_name}_${today_early_1}.txt |
  159. awk -F " " '{
  160. if (NR == 1) {
  161. print $1"\t"$2
  162. } else {
  163. split($0, fields, " ");
  164. OFS="\t";
  165. line=""
  166. for (i = 1; i <= 10 && i <= length(fields); i++) {
  167. line = (line ? line "\t" : "") fields[i];
  168. }
  169. print line
  170. }
  171. }' > "$change_txt_path"
  172. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  173. step_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
  174. if [ $? -ne 0 ]; then
  175. msg="新模型文件格式转换失败"
  176. echo -e "$LOG_PREFIX -- AUC对比 -- $msg: 耗时 $step_elapsed"
  177. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  178. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  179. exit 1
  180. fi
  181. echo -e "$LOG_PREFIX -- 模型文件格式转换 -- 转换后的路径为 [$change_txt_path]: 耗时 $step_elapsed"
  182. ## 7 模型文件上传OSS
  183. #step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  184. #online_model_path=${OSS_PATH}/${model_name}.txt
  185. #$HADOOP fs -test -e ${online_model_path}
  186. #if [ $? -eq 0 ]; then
  187. # echo "数据存在, 先删除。"
  188. # $HADOOP fs -rm -r -skipTrash ${online_model_path}
  189. #else
  190. # echo "数据不存在"
  191. #fi
  192. #$HADOOP fs -put ${MODEL_PATH}/${model_name}_${today_early_1}_change.txt ${online_model_path}
  193. #
  194. #step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  195. #step_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
  196. #if [ $? -ne 0 ]; then
  197. # msg="广告模型文件至OSS失败, OSS模型文件路径: $online_model_path"
  198. # echo -e "$LOG_PREFIX -- 模型文件推送至OSS -- $msg: 耗时 $step_elapsed"
  199. # elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  200. # /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  201. # exit 1
  202. #fi
  203. #echo -e "$LOG_PREFIX -- 模型文件推送至OSS -- 广告模型文件至OSS成功, OSS模型文件路径 $online_model_path: 耗时 $step_elapsed"
  204. #
  205. #
  206. #
  207. #
  208. ## 8 本地保存最新的线上使用的模型,用于下一次的AUC验证
  209. #step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  210. #cp -f ${LAST_MODEL_HOME}/model_online.txt ${LAST_MODEL_HOME}/model_online_$(date +\%Y\%m\%d).txt
  211. #cp -f ${MODEL_PATH}/${model_name}_${today_early_1}.txt ${LAST_MODEL_HOME}/model_online.txt
  212. #
  213. #step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  214. #step_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
  215. #if [ $? -ne 0 ]; then
  216. # msg="模型备份失败"
  217. # echo -e "$LOG_PREFIX -- 模型备份 -- $msg: 耗时 $step_elapsed"
  218. # elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  219. # /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  220. # exit 1
  221. #fi
  222. #echo -e "$LOG_PREFIX -- 模型备份 -- 模型备份完成: 耗时 $step_elapsed"
  223. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  224. msg="广告模型文件更新完成 \n\t \n\t 新模型AUC: $new_auc \n\t 线上模型AUC: $online_auc AUC差值: $auc_diff_abs \n\t 模型上传路径: $online_model_path \n\t"
  225. echo -e "$LOG_PREFIX -- 模型更新完成 -- $msg: 耗时 $step_elapsed"
  226. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  227. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  228. # 32 16 * * * cd /root/zhangbo/recommend-emr-dataprocess && /bin/sh ./ad/01_ad_model_update_everyday.sh > logs/01_update_eventday$(date +\%Y-\%m-\%d_\%H).log 2>&1