123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195 |
- import argparse
- import gzip
- import os.path
- import pandas as pd
- from hdfs import InsecureClient
- client = InsecureClient("http://master-1-1.c-7f31a3eea195cb73.cn-hangzhou.emr.aliyuncs.com:9870", user="spark")
- SEGMENT_BASE_PATH = os.environ.get("SEGMENT_BASE_PATH", "/dw/recommend/model/36_model_attachment/score_calibration_file")
- PREDICT_CACHE_PATH = os.environ.get("PREDICT_CACHE_PATH", "/root/zhaohp/XGB/predict_cache")
- def parse_predict_line(line: str) -> [bool, dict]:
- sp = line.replace("\n", "").split("\t")
- if len(sp) == 4:
- label = int(sp[0])
- cid = sp[3].split("_")[0]
- score = float(sp[2].replace("[", "").replace("]", "").split(",")[1])
- return True, {
- "label": label,
- "cid": cid,
- "score": score
- }
- return False, {}
- def read_predict_file(file_path: str) -> pd.DataFrame:
- result = []
- if file_path.startswith("/dw"):
- if not file_path.endswith("/"):
- file_path += "/"
- for file in client.list(file_path):
- with client.read(file_path + file) as reader:
- with gzip.GzipFile(fileobj=reader, mode="rb") as gz_file:
- for line in gz_file.read().decode("utf-8").split("\n"):
- b, d = parse_predict_line(line)
- if b: result.append(d)
- else:
- with open(file_path, "r") as f:
- for line in f.readlines():
- b, d = parse_predict_line(line)
- if b: result.append(d)
- return pd.DataFrame(result)
- def calibration_file_save(df: pd.DataFrame, file_path: str):
- if file_path.startswith("/dw"):
- # 完整的分段文件保存
- with client.write(file_path, encoding='utf-8', overwrite=True) as writer:
- writer.write(df.to_csv(sep="\t", index=False))
- else:
- df.tocsv(file_path, sep="\t", index=False)
- def predict_local_save_for_auc(old_df: pd.DataFrame, new_df: pd.DataFrame):
- """
- 本地保存一份评估结果, 计算AUC使用
- """
- d = {"old": old_df, "new": new_df}
- for key in d:
- df = d[key]
- if 'score' in df.columns:
- score_df = df[['label', "score"]]
- score_df.to_csv(f"{PREDICT_CACHE_PATH}/{key}_1.txt", sep="\t", index=False, header=False)
- if 'score_2' in df.columns:
- score_2_df = d[key][['label', "score_2"]]
- score_2_df.to_csv(f"{PREDICT_CACHE_PATH}/{key}_2.txt", sep="\t", index=False, header=False)
- def save_full_calibration_file(df: pd.DataFrame, segment_file_path: str):
- if segment_file_path.startswith("/dw"):
- # 完整的分段文件保存
- with client.write(segment_file_path, encoding='utf-8', overwrite=True) as writer:
- writer.write(df.to_csv(sep="\t", index=False))
- else:
- df.to_csv(segment_file_path, sep="\t", index=False)
- def get_predict_calibration_file(df: pd.DataFrame, predict_basename: str) -> [pd.DataFrame]:
- """
- 计算模型分的diff_rate
- """
- agg_df = predict_df_agg(df)
- agg_df['diff_rate'] = (agg_df['score_avg'] / agg_df['true_ctcvr'] - 1).mask(agg_df['true_ctcvr'] == 0, 0).round(6)
- condition = 'view > 1000 and diff_rate >= 0.2'
- save_full_calibration_file(agg_df, f"{SEGMENT_BASE_PATH}/{predict_basename}.txt")
- calibration = agg_df[(agg_df['view'] > 1000) & ((agg_df['diff_rate'] >= 0.2) | (agg_df['diff_rate'] <= 0.2)) & agg_df['diff_rate'] != 0]
- return calibration
- def get_predict_basename(predict_path) -> [str]:
- """
- 获取文件路径的最后一部分,作为与模型关联的文件名
- """
- predict_basename = os.path.basename(predict_path)
- if predict_basename.endswith("/"):
- predict_basename = predict_basename[:-1]
- return predict_basename
- def calc_calibration_score2(df: pd.DataFrame, calibration_df: pd.DataFrame) -> [pd.DataFrame]:
- calibration_df = calibration_df[['cid', 'diff_rate']]
- df = pd.merge(df, calibration_df, on='cid', how='left').fillna(0)
- df['score_2'] = df['score'] / (1 + df['diff_rate'])
- return df
- def predict_df_agg(df: pd.DataFrame) -> [pd.DataFrame]:
- # 基础聚合操作
- df['abs_error'] = abs(df['label'] - df['score'])
- agg_operations = {
- 'view': ('cid', 'size'),
- 'conv': ('label', 'sum'),
- 'score_avg': ('score', lambda x: round(x.mean(), 6)),
- 'mae': ('abs_error', lambda x: round(x.mean(), 6)),
- }
- # 如果存在 score_2 列,则增加相关聚合
- if "score_2" in df.columns:
- agg_operations['score_2_avg'] = ('score_2', lambda x: round(x.mean(), 6))
- grouped_df = df.groupby("cid").agg(**agg_operations).reset_index()
- grouped_df['true_ctcvr'] = grouped_df['conv'] / grouped_df['view']
- return grouped_df
- def _main(old_predict_path: str, new_predict_path: str, calibration_file: str, analyse_file: str):
- old_df = read_predict_file(old_predict_path)
- new_df = read_predict_file(new_predict_path)
- old_calibration_df = get_predict_calibration_file(old_df, get_predict_basename(old_predict_path))
- old_df = calc_calibration_score2(old_df, old_calibration_df)
- new_calibration_df = get_predict_calibration_file(new_df, get_predict_basename(new_predict_path))
- new_df = calc_calibration_score2(new_df, new_calibration_df)
- # 本地保存label、score以及校准后的score,用于计算AUC等信息
- predict_local_save_for_auc(old_df, new_df)
- # 新模型校准文件保存本地,用于同步OSS
- new_calibration_df[['cid', 'diff_rate']].to_csv(calibration_file, sep="\t", index=False, header=False)
- old_agg_df = predict_df_agg(old_df)
- new_agg_df = predict_df_agg(new_df)
- # 字段重命名,和列过滤
- old_agg_df.rename(columns={'score_avg': 'old_score_avg', 'score_2_avg': 'old_score_2_avg', 'mae': 'old_mae'}, inplace=True)
- new_agg_df.rename(columns={'score_avg': 'new_score_avg', 'score_2_avg': 'new_score_2_avg', 'mae': 'new_mae'}, inplace=True)
- old_group_df = old_agg_df[['cid', 'view', 'conv', 'true_ctcvr', 'old_score_avg', 'old_score_2_avg', 'old_mae']]
- new_group_df = new_agg_df[['cid', 'new_score_avg', 'new_score_2_avg', 'new_mae']]
- merged = pd.merge(old_group_df, new_group_df, on='cid', how='left')
- # 计算与真实ctcvr的差异值
- merged["(new-true)/true"] = (merged['new_score_avg'] / merged['true_ctcvr'] - 1).mask(merged['true_ctcvr'] == 0, 0)
- merged["(old-true)/true"] = (merged['old_score_avg'] / merged['true_ctcvr'] - 1).mask(merged['true_ctcvr'] == 0, 0)
- # 计算校准后的模型分与ctcvr的差异值
- merged["(new2-true)/true"] = (merged['new_score_2_avg'] / merged['true_ctcvr'] - 1).mask(merged['true_ctcvr'] == 0, 0)
- merged["(old2-true)/true"] = (merged['old_score_2_avg'] / merged['true_ctcvr'] - 1).mask(merged['true_ctcvr'] == 0, 0)
- # 按照曝光排序,写入本地文件
- merged = merged.sort_values(by=['view'], ascending=False)
- merged = merged[[
- 'cid', 'view', "conv", "true_ctcvr",
- "old_score_avg", "new_score_avg", "(old-true)/true", "(new-true)/true",
- "old_score_2_avg", "new_score_2_avg", "(old2-true)/true", "(new2-true)/true",
- 'old_mae', 'new_mae'
- ]]
- # 根据文件名保存不同的格式
- if analyse_file.endswith(".csv"):
- merged.to_csv(analyse_file, index=False)
- else:
- with open(analyse_file, "w") as writer:
- writer.write(merged.to_string(index=False))
- print("0")
- if __name__ == '__main__':
- parser = argparse.ArgumentParser(description="model_predict_analyse_20241101.py")
- parser.add_argument("-op", "--old_predict_path", required=True, help="老模型评估结果")
- parser.add_argument("-np", "--new_predict_path", required=True, help="新模型评估结果")
- parser.add_argument("-af", "--analyse_file", required=True, help="最后计算结果的保存路径")
- parser.add_argument("-cf", "--calibration_file", required=True, help="线上使用的segment文件保存路径")
- args = parser.parse_args()
- _main(
- old_predict_path=args.old_predict_path,
- new_predict_path=args.new_predict_path,
- calibration_file=args.calibration_file,
- analyse_file=args.analyse_file
- )
|