check_auc.sh 6.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119
  1. #!/bin/sh
  2. set -ex
  3. source /root/anaconda3/bin/activate py37
  4. # nohup sh handle_rov.sh > "$(date +%Y%m%d_%H%M%S)_handle_rov.log" 2>&1 &
  5. # 原始数据table name
  6. table='alg_recsys_sample_all'
  7. #today="$(date +%Y%m%d)"
  8. today=20240710
  9. #today_early_3="$(date -d '3 days ago' +%Y%m%d)"
  10. today_early_3=20240703
  11. #table='alg_recsys_sample_all_test'
  12. # 处理分区配置 推荐数据间隔一天生产,所以5日0点使用3日0-23点数据生产new模型数据
  13. begin_early_2_Str="$(date -d '2 days ago' +%Y%m%d)"
  14. end_early_2_Str="$(date -d '2 days ago' +%Y%m%d)"
  15. beginHhStr=00
  16. endHhStr=23
  17. max_hour=05
  18. max_minute=00
  19. # 各节点产出hdfs文件绝对路径
  20. # 源数据文件
  21. originDataPath=/dw/recommend/model/13_sample_data/
  22. # 特征值
  23. valueDataPath=/dw/recommend/model/14_feature_data/
  24. # 特征分桶
  25. bucketDataPath=/dw/recommend/model/16_train_data/
  26. # 模型数据路径
  27. MODEL_PATH=/root/joe/recommend-emr-dataprocess/model
  28. # 预测路径
  29. PREDICT_PATH=/root/joe/recommend-emr-dataprocess/predict
  30. # 历史线上正在使用的模型数据路径
  31. LAST_MODEL_HOME=/root/joe/model_online
  32. # 模型数据文件前缀
  33. model_name=akaqjl8
  34. # fm模型
  35. FM_HOME=/root/sunmingze/alphaFM/bin
  36. # hadoop
  37. HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
  38. # 0 对比AUC 前置对比2日模型数据 与 线上模型数据效果对比,如果2日模型优于线上,更新线上模型
  39. echo "$(date +%Y-%m-%d_%H-%M-%S)----------step4------------开始对比,新:${MODEL_PATH}/${model_name}_20240703.txt,与线上online模型数据auc效果"
  40. #$HADOOP fs -text ${bucketDataPath}/20240707/* | ${FM_HOME}/fm_predict -m ${LAST_MODEL_HOME}/model_online.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_online.txt
  41. if [ $? -ne 0 ]; then
  42. echo "推荐线上模型AUC计算失败"
  43. /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step4新旧模型AUC对比\n【是否成功】:error\n【信息】:推荐线上模型AUC计算失败"
  44. else
  45. # $HADOOP fs -text ${bucketDataPath}/20240707/* | ${FM_HOME}/fm_predict -m ${MODEL_PATH}/${model_name}_20240703.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_new.txt
  46. if [ $? -ne 0 ]; then
  47. echo "推荐新模型AUC计算失败"
  48. /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step4新旧模型AUC对比\n【是否成功】:error\n【信息】:推荐新模型AUC计算失败${PREDICT_PATH}/${model_name}_${today}_new.txt"
  49. else
  50. online_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_online.txt | /root/sunmingze/AUC/AUC`
  51. if [ $? -ne 0 ]; then
  52. echo "推荐线上模型AUC计算失败"
  53. /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step4新旧模型AUC对比\n【是否成功】:error\n【信息】:推荐线上模型AUC计算失败"
  54. else
  55. new_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_new.txt | /root/sunmingze/AUC/AUC`
  56. if [ $? -ne 0 ]; then
  57. echo "推荐新模型AUC计算失败"
  58. /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step4新旧模型AUC对比\n【是否成功】:error\n【信息】:推荐新模型AUC计算失败${PREDICT_PATH}/${model_name}_${today}_new.txt"
  59. else
  60. # 4.1 对比auc数据判断是否更新线上模型
  61. if [ "$online_auc" \< "$new_auc" ]; then
  62. echo "新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  63. # 4.1.1 模型格式转换
  64. cat ${MODEL_PATH}/${model_name}_20240703.txt |
  65. awk -F " " '{
  66. if (NR == 1) {
  67. print $1"\t"$2
  68. } else {
  69. split($0, fields, " ");
  70. OFS="\t";
  71. line=""
  72. for (i = 1; i <= 10 && i <= length(fields); i++) {
  73. line = (line ? line "\t" : "") fields[i];
  74. }
  75. print line
  76. }
  77. }' > ${MODEL_PATH}/${model_name}_20240703_change.txt
  78. if [ $? -ne 0 ]; then
  79. echo "新模型文件格式转换失败"
  80. /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step4模型格式转换\n【是否成功】:error\n【信息】:新模型文件格式转换失败${MODEL_PATH}/${model_name}_20240703.txt"
  81. else
  82. # # 4.1.2 模型文件上传OSS
  83. # online_model_path=${OSS_PATH}/${model_name}.txt
  84. # $HADOOP fs -test -e ${online_model_path}
  85. # if [ $? -eq 0 ]; then
  86. # echo "数据存在, 先删除。"
  87. # $HADOOP fs -rm -r -skipTrash ${online_model_path}
  88. # else
  89. # echo "数据不存在"
  90. # fi
  91. # $HADOOP fs -put ${MODEL_PATH}/${model_name}_20240703_change.txt ${online_model_path}
  92. # if [ $? -eq 0 ]; then
  93. # echo "推荐模型文件至OSS成功"
  94. # # 4.1.3 本地保存最新的线上使用的模型,用于下一次的AUC验证
  95. cp -f ${LAST_MODEL_HOME}/model_online.txt ${LAST_MODEL_HOME}/model_online_$(date +\%Y\%m\%d).txt
  96. cp -f ${MODEL_PATH}/${model_name}_20240703.txt ${LAST_MODEL_HOME}/model_online.txt
  97. if [ $? -ne 0 ]; then
  98. echo "模型备份失败"
  99. fi
  100. /root/anaconda3/bin/python monitor_util.py --level info --msg "荐模型数据更新 \n【任务名称】:step4模型更新\n【是否成功】:success\n【信息】:新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc},已更新${model_name}_20240703.txt模型}"
  101. # else
  102. # echo "推荐模型文件至OSS失败"
  103. # /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step4模型推送oss\n【是否成功】:error\n【信息】:推荐模型文件至OSS失败${MODEL_PATH}/${model_name}_20240703_change.txt --- ${online_model_path}"
  104. # fi
  105. fi
  106. else
  107. echo "新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  108. /root/anaconda3/bin/python monitor_util.py --level info --msg "荐模型数据更新 \n【任务名称】:step4模型更新\n【是否成功】:success\n【信息】:新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}}"
  109. fi
  110. fi
  111. fi
  112. fi
  113. fi