01_ad_model_update.sh 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395
  1. #!/bin/sh
  2. set -x
  3. export PATH=$SPARK_HOME/bin:$PATH
  4. export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf
  5. export JAVA_HOME=/usr/lib/jvm/java-1.8.0
  6. sh_path=$(cd $(dirname $0); pwd)
  7. source ${sh_path}/00_common.sh
  8. source /root/anaconda3/bin/activate py37
  9. # 全局常量
  10. LOG_PREFIX=广告模型训练任务
  11. HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
  12. TRAIN_PATH=/dw/recommend/model/31_ad_sample_data_v4
  13. BUCKET_FEATURE_PATH=/dw/recommend/model/33_ad_train_data_v4
  14. TABLE=alg_recsys_ad_sample_all
  15. # 特征文件名
  16. feature_file=20240703_ad_feature_name.txt
  17. # 模型本地临时保存路径
  18. model_local_home=/root/zhaohp/XGB/
  19. # 模型HDFS保存路径,测试时修改为其他路径,避免影响线上
  20. MODEL_PATH=/dw/recommend/model/35_ad_model
  21. # 预测结果保存路径,测试时修改为其他路径,避免影响线上
  22. PREDICT_RESULT_SAVE_PATH=/dw/recommend/model/34_ad_predict_data
  23. # 模型OSS保存路径,测试时修改为其他路径,避免影响线上
  24. MODEL_OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/zhangbo/
  25. # 线上模型名,测试时修改为其他模型名,避免影响线上
  26. model_name=model_xgb_351_1000_v2
  27. # 线上校准文件名
  28. OSS_CALIBRATION_FILE_NAME=model_xgb_351_1000_v2_calibration
  29. # 本地保存HDFS模型路径文件,测试时修改为其他模型名,避免影响线上
  30. model_path_file=${model_local_home}/online_model_path.txt
  31. # 获取当前是星期几,1表示星期一
  32. current_day_of_week="$(date +"%u")"
  33. # 任务开始时间
  34. start_time=$(date +%s)
  35. # 前一天
  36. today_early_1="$(date -d '1 days ago' +%Y%m%d)"
  37. # 线上模型在HDFS中的路径
  38. online_model_path=`cat ${model_path_file}`
  39. # 训练用的数据路径
  40. train_data_path=""
  41. # 评估用的数据路径
  42. predict_date_path=""
  43. #评估结果保存路径
  44. new_model_predict_result_path=""
  45. # 模型保存路径
  46. model_save_path=""
  47. # 评测结果保存路径,后续需要根据此文件评估是否要更新模型
  48. predict_analyse_file_path=""
  49. # 校准文件保存路径
  50. calibration_file_path=""
  51. # 保存模型评估的分析结果
  52. old_incr_rate_avg=0
  53. new_incr_rate_avg=0
  54. top10_msg=""
  55. declare -A real_score_map
  56. declare -A old_score_map
  57. declare -A new_score_map
  58. # 校验命令的退出码
  59. check_run_status() {
  60. local status=$1
  61. local step_start_time=$2
  62. local step_name=$3
  63. local msg=$4
  64. local step_end_time=$(date +%s)
  65. local step_elapsed=$(($step_end_time - $step_start_time))
  66. if [ ${status} -ne 0 ]; then
  67. echo "${LOG_PREFIX} -- ${step_name}失败: 耗时 ${step_elapsed}"
  68. local elapsed=$(($step_end_time - $start_time))
  69. /root/anaconda3/bin/python ${sh_path}/ad_monitor_util.py --level error --msg "${msg}" --start "${start_time}" --elapsed "${elapsed}" --top10 "${top10_msg}"
  70. exit 1
  71. else
  72. echo "${LOG_PREFIX} -- ${step_name}成功: 耗时 ${step_elapsed}"
  73. fi
  74. }
  75. send_success_upload_msg(){
  76. # 发送更新成功通知
  77. local msg=" 广告模型文件更新完成"
  78. msg+="\n\t - 老模型Top10差异平均值: ${old_incr_rate_avg}"
  79. msg+="\n\t - 新模型Top10差异平均值: ${new_incr_rate_avg}"
  80. msg+="\n\t - 模型在HDFS中的路径: ${model_save_path}"
  81. msg+="\n\t - 模型上传OSS中的路径: ${MODEL_OSS_PATH}/${model_name}.tar.gz"
  82. local step_end_time=$(date +%s)
  83. local elapsed=$((${step_end_time} - ${start_time}))
  84. /root/anaconda3/bin/python ${sh_path}/ad_monitor_util.py --level info --msg "${msg}" --start "${start_time}" --elapsed "${elapsed}" --top10 "${top10_msg}"
  85. }
  86. init() {
  87. declare -a date_keys=()
  88. local count=1
  89. local current_data="$(date -d '2 days ago' +%Y%m%d)"
  90. # 循环获取前 n 天的非节日日期
  91. while [[ ${count} -le 7 ]]; do
  92. date_key=$(date -d "${current_data}" +%Y%m%d)
  93. # 判断是否是节日,并拼接训练数据路径
  94. if [ $(is_not_holidays ${date_key}) -eq 1 ]; then
  95. # 将 date_key 放入数组
  96. date_keys+=("${date_key}")
  97. if [[ -z ${train_data_path} ]]; then
  98. train_data_path="${BUCKET_FEATURE_PATH}/${date_key}"
  99. else
  100. train_data_path="${BUCKET_FEATURE_PATH}/${date_key},${train_data_path}"
  101. fi
  102. count=$((count + 1))
  103. else
  104. echo "日期: ${date_key}是节日,跳过"
  105. fi
  106. current_data=$(date -d "${current_data} -1 day" +%Y%m%d)
  107. done
  108. last_index=$((${#date_keys[@]} - 1))
  109. train_first_day=${date_keys[$last_index]}
  110. train_last_day=${date_keys[0]}
  111. model_save_path=${MODEL_PATH}/${model_name}_${train_first_day: -4}_${train_last_day: -4}
  112. predict_date_path=${BUCKET_FEATURE_PATH}/${today_early_1}
  113. new_model_predict_result_path=${PREDICT_RESULT_SAVE_PATH}/${today_early_1}_351_1000_${train_first_day: -4}_${train_last_day: -4}
  114. online_model_predict_result_path=${PREDICT_RESULT_SAVE_PATH}/${today_early_1}_351_1000_${online_model_path: -9}
  115. predict_analyse_file_path=${model_local_home}/predict_analyse_file/${today_early_1}_351_1000_analyse.txt
  116. calibration_file_path=${model_local_home}/${OSS_CALIBRATION_FILE_NAME}.txt
  117. echo "init param train_data_path: ${train_data_path}"
  118. echo "init param predict_date_path: ${predict_date_path}"
  119. echo "init param new_model_predict_result_path: ${new_model_predict_result_path}"
  120. echo "init param online_model_predict_result_path: ${online_model_predict_result_path}"
  121. echo "init param model_save_path: ${model_save_path}"
  122. echo "init param online_model_path: ${online_model_path}"
  123. echo "init param feature_file: ${feature_file}"
  124. echo "init param model_name: ${model_name}"
  125. echo "init param model_local_home: ${model_local_home}"
  126. echo "init param model_oss_path: ${MODEL_OSS_PATH}"
  127. echo "init param predict_analyse_file_path: ${predict_analyse_file_path}"
  128. echo "init param calibration_file_path: ${calibration_file_path}"
  129. echo "init param current_day_of_week: ${current_day_of_week}"
  130. echo "当前Python环境安装的Python版本: $(python --version)"
  131. echo "当前Python环境安装的三方包: $(python -m pip list)"
  132. }
  133. # 校验大数据任务是否执行完成
  134. check_ad_hive() {
  135. local step_start_time=$(date +%s)
  136. local max_hour=05
  137. local max_minute=30
  138. local elapsed=0
  139. while true; do
  140. local python_return_code=$(python ${sh_path}/ad_utils.py --excute_program check_ad_origin_hive --partition ${today_early_1} --hh 23)
  141. elapsed=$(($(date +%s) - ${step_start_time}))
  142. if [ "${python_return_code}" -eq 0 ]; then
  143. break
  144. fi
  145. echo "Python程序返回非0值,等待五分钟后再次调用。"
  146. sleep 300
  147. local current_hour=$(date +%H)
  148. local current_minute=$(date +%M)
  149. if (( ${current_hour} > ${max_hour} || ( ${current_hour} == ${max_hour} && ${current_minute} >= ${max_minute} ) )); then
  150. local msg="大数据数据生产校验失败, 分区: ${today_early_1}"
  151. echo -e "${LOG_PREFIX} -- 大数据数据生产校验 -- ${msg}: 耗时 ${elapsed}"
  152. /root/anaconda3/bin/python ${sh_path}/ad_monitor_util.py --level error --msg "${msg}" --start "${start_time}" --elapsed "${elapsed}"
  153. exit 1
  154. fi
  155. done
  156. echo "${LOG_PREFIX} -- 大数据数据生产校验 -- 大数据数据生产校验通过: 耗时 ${elapsed}"
  157. }
  158. origin_data() {
  159. (
  160. source ${sh_path}/25_xgb_make_data_origin_bucket.sh
  161. make_origin_data
  162. )
  163. }
  164. bucket_feature() {
  165. (
  166. source ${sh_path}/25_xgb_make_data_origin_bucket.sh
  167. make_bucket_feature
  168. )
  169. }
  170. xgb_train() {
  171. local step_start_time=$(date +%s)
  172. /opt/apps/SPARK3/spark-3.3.1-hadoop3.2-1.0.5/bin/spark-class org.apache.spark.deploy.SparkSubmit \
  173. --class com.tzld.piaoquan.recommend.model.train_01_xgb_ad_20240808 \
  174. --master yarn --driver-memory 6G --executor-memory 9G --executor-cores 1 --num-executors 31 \
  175. --conf spark.yarn.executor.memoryoverhead=1000 \
  176. --conf spark.shuffle.service.enabled=true \
  177. --conf spark.shuffle.service.port=7337 \
  178. --conf spark.shuffle.consolidateFiles=true \
  179. --conf spark.shuffle.manager=sort \
  180. --conf spark.storage.memoryFraction=0.4 \
  181. --conf spark.shuffle.memoryFraction=0.5 \
  182. --conf spark.default.parallelism=200 \
  183. /root/zhangbo/recommend-model/recommend-model-produce/target/recommend-model-produce-jar-with-dependencies.jar \
  184. featureFile:20240703_ad_feature_name.txt \
  185. trainPath:${train_data_path} \
  186. testPath:${predict_date_path} \
  187. savePath:${new_model_predict_result_path} \
  188. modelPath:${model_save_path} \
  189. eta:0.01 gamma:0.0 max_depth:5 num_round:1000 num_worker:30 repartition:20
  190. local return_code=$?
  191. check_run_status ${return_code} ${step_start_time} "XGB模型训练任务" "XGB模型训练失败"
  192. }
  193. calc_model_predict() {
  194. local count=0
  195. local max_line=10
  196. local old_total_diff=0
  197. local new_total_diff=0
  198. top10_msg="| CID | 老模型相对真实CTCVR的变化 | 新模型相对真实CTCVR的变化 |"
  199. top10_msg+=" \n| ---- | --------- | -------- |"
  200. while read -r line && [ ${count} -lt ${max_line} ]; do
  201. # 使用 ! 取反判断,只有当行中不包含 "cid" 时才执行继续的逻辑
  202. if [[ "${line}" == *"cid"* ]]; then
  203. continue
  204. fi
  205. read -a numbers <<< "${line}"
  206. # 分数分别保存
  207. real_score_map[${numbers[0]}]=${numbers[3]}
  208. old_score_map[${numbers[0]}]=${numbers[6]}
  209. new_score_map[${numbers[0]}]=${numbers[7]}
  210. # 拼接Top10详情的飞书消息
  211. top10_msg="${top10_msg} \n| ${numbers[0]} | ${numbers[6]} | ${numbers[7]} | "
  212. # 计算top10相对误差绝对值的均值
  213. old_abs_score=$( echo "${numbers[6]} * ((${numbers[6]} >= 0) * 2 - 1)" | bc -l )
  214. new_abs_score=$( echo "${numbers[7]} * ((${numbers[7]} >= 0) * 2 - 1)" | bc -l )
  215. old_total_diff=$( echo "${old_total_diff} + ${old_abs_score}" | bc -l )
  216. new_total_diff=$( echo "${new_total_diff} + ${new_abs_score}" | bc -l )
  217. count=$((${count} + 1))
  218. done < "${predict_analyse_file_path}"
  219. local return_code=$?
  220. check_run_status ${return_code} ${step_start_time} "计算Top10差异" "计算Top10差异异常"
  221. old_incr_rate_avg=$( echo "scale=6; ${old_total_diff} / ${count}" | bc -l )
  222. check_run_status $? ${step_start_time} "计算老模型Top10差异" "计算老模型Top10差异异常"
  223. new_incr_rate_avg=$( echo "scale=6; ${new_total_diff} / ${count}" | bc -l )
  224. check_run_status $? ${step_start_time} "计算新模型Top10差异" "计算新模型Top10差异异常"
  225. echo "老模型Top10差异平均值: ${old_incr_rate_avg}"
  226. echo "新模型Top10差异平均值: ${new_incr_rate_avg}"
  227. echo "新老模型分数对比: "
  228. for cid in "${!new_score_map[@]}"; do
  229. echo "\t CID: $cid, 老模型分数: ${old_score_map[$cid]}, 新模型分数: ${new_score_map[$cid]}"
  230. done
  231. }
  232. model_predict() {
  233. # 线上模型评估最新的数据
  234. local step_start_time=$(date +%s)
  235. /opt/apps/SPARK3/spark-3.3.1-hadoop3.2-1.0.5/bin/spark-class org.apache.spark.deploy.SparkSubmit \
  236. --class com.tzld.piaoquan.recommend.model.pred_01_xgb_ad_hdfsfile_20240813 \
  237. --master yarn --driver-memory 1G --executor-memory 3G --executor-cores 1 --num-executors 30 \
  238. --conf spark.yarn.executor.memoryoverhead=1024 \
  239. --conf spark.shuffle.service.enabled=true \
  240. --conf spark.shuffle.service.port=7337 \
  241. --conf spark.shuffle.consolidateFiles=true \
  242. --conf spark.shuffle.manager=sort \
  243. --conf spark.storage.memoryFraction=0.4 \
  244. --conf spark.shuffle.memoryFraction=0.5 \
  245. --conf spark.default.parallelism=200 \
  246. /root/zhangbo/recommend-model/recommend-model-produce/target/recommend-model-produce-jar-with-dependencies.jar \
  247. featureFile:20240703_ad_feature_name.txt \
  248. testPath:${predict_date_path} \
  249. savePath:${online_model_predict_result_path} \
  250. modelPath:${online_model_path}
  251. local return_code=$?
  252. check_run_status ${return_code} ${step_start_time} "线上模型评估${predict_date_path: -8}的数据" "线上模型评估${predict_date_path: -8}的数据失败"
  253. # 结果分析
  254. local python_return_code=$(python ${sh_path}/model_predict_analyse.py -op ${online_model_predict_result_path} -np ${new_model_predict_result_path} -af ${predict_analyse_file_path} -cf ${calibration_file_path})
  255. check_run_status ${python_return_code} ${step_start_time} "分析线上模型评估${predict_date_path: -8}的数据" "分析线上模型评估${predict_date_path: -8}的数据失败"
  256. calc_model_predict
  257. if (( $(echo "${new_incr_rate_avg} > 0.100000" | bc -l ) ));then
  258. echo "线上模型评估${predict_date_path: -8}的数据,绝对误差大于0.1,请检查"
  259. check_run_status 1 ${step_start_time} "${predict_date_path: -8}的数据,绝对误差大于0.1" "线上模型评估${predict_date_path: -8}的数据,绝对误差大于0.1,请检查"
  260. exit 1
  261. fi
  262. # 对比两个模型的差异
  263. score_diff=$( echo "${new_incr_rate_avg} - ${old_incr_rate_avg}" | bc -l )
  264. if (( $(echo "${score_diff} > 0.050000" | bc -l ) ));then
  265. echo "两个模型评估${predict_date_path: -8}的数据,两个模型分数差异为: ${score_diff}, 大于0.05, 请检查"
  266. check_run_status 1 ${step_start_time} "两个模型评估${predict_date_path: -8}的数据" "两个模型评估${predict_date_path: -8}的数据,两个模型分数差异为: ${score_diff}, 大于0.05"
  267. exit 1
  268. fi
  269. }
  270. model_upload_oss() {
  271. local step_start_time=$(date +%s)
  272. (
  273. cd ${model_local_home}
  274. ${HADOOP} fs -get ${model_save_path} ${model_name}
  275. if [ ! -d ${model_name} ]; then
  276. echo "从HDFS下载模型失败"
  277. check_run_status 1 ${step_start_time} "HDFS下载模型任务" "HDFS下载模型失败"
  278. exit 1
  279. fi
  280. tar -czvf ${model_name}.tar.gz -C ${model_name} .
  281. rm -rf ${model_name}.tar.gz.crc
  282. # 从OSS中移除模型文件和校准文件
  283. ${HADOOP} fs -rm -r -skipTrash ${MODEL_OSS_PATH}/${model_name}.tar.gz ${MODEL_OSS_PATH}/${OSS_CALIBRATION_FILE_NAME}.txt
  284. # 将模型文件和校准文件推送到OSS上
  285. ${HADOOP} fs -put ${model_name}.tar.gz ${OSS_CALIBRATION_FILE_NAME}.txt ${MODEL_OSS_PATH}
  286. local return_code=$?
  287. check_run_status ${return_code} ${step_start_time} "模型上传OSS任务" "模型上传OSS失败"
  288. echo ${model_save_path} > ${model_path_file}
  289. #
  290. rm -f ./${model_name}.tar.gz
  291. rm -rf ./${model_name}
  292. rm -rf ${OSS_CALIBRATION_FILE_NAME}.txt
  293. )
  294. local return_code=$?
  295. check_run_status ${return_code} ${step_start_time} "模型上传OSS任务" "模型上传OSS失败"
  296. local step_end_time=$(date +%s)
  297. local elapsed=$((${step_end_time} - ${start_time}))
  298. echo -e "${LOG_PREFIX} -- 模型更新完成 -- 模型更新成功: 耗时 ${elapsed}"
  299. send_success_upload_msg
  300. }
  301. # 主方法
  302. main() {
  303. init
  304. check_ad_hive
  305. origin_data
  306. bucket_feature
  307. if [ "${current_day_of_week}" -eq 1 ] || [ "${current_day_of_week}" -eq 3 ] || [ "${current_day_of_week}" -eq 5 ]; then
  308. echo "当前是周一,周三或周五,开始训练并更新模型"
  309. xgb_train
  310. model_predict
  311. model_upload_oss
  312. else
  313. echo "当前是周一,周三或周五,不更新模型"
  314. fi
  315. }
  316. main