nor_train.sh 1.9 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162
  1. #!/bin/sh
  2. set -x
  3. start_date=""
  4. end_date=""
  5. if(($#==2))
  6. then
  7. start_date=$1
  8. end_date=$2
  9. else
  10. start_date=$(date +%Y%m%d -d "-8 $days day")
  11. end_date=$(date +%Y%m%d -d "-2 $days day")
  12. fi
  13. # env
  14. export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf
  15. export JAVA_HOME=/usr/lib/jvm/java-1.8.0
  16. # params
  17. FEATURE_FILE=20250627_recsys_nor_name.txt
  18. BASE_TRAIN_DATA_PATH=/dw/recommend/model/83_recsys_nor_train_data
  19. PREDICT_RESULT_PATH=/dw/recommend/model/83_recsys_nor_predict_data
  20. MODEL_SAVE_PATH=/dw/recommend/model/83_recsys_nor_model/model_xgb
  21. train_data_path=""
  22. for((i=0; i<=21; i++))
  23. do
  24. data_date=$(date -d "$start_date $i day" +"%Y%m%d")
  25. if [ "$data_date" -le "$end_date" ]
  26. then
  27. one_day_data_path="${BASE_TRAIN_DATA_PATH}/${data_date}"
  28. if [[ -z $train_data_path ]]
  29. then
  30. train_data_path=$one_day_data_path
  31. else
  32. train_data_path="$train_data_path,$one_day_data_path"
  33. fi
  34. fi
  35. done
  36. ## ******* train *******
  37. workers=32
  38. /opt/apps/SPARK3/spark-3.3.1-hadoop3.2-1.0.5/bin/spark-class org.apache.spark.deploy.SparkSubmit \
  39. --class com.tzld.piaoquan.recommend.model.train_recsys_61_xgb_nor_20241209 \
  40. --master yarn --driver-memory 4G --executor-memory 10G --executor-cores 1 --num-executors ${workers} \
  41. --conf spark.yarn.executor.memoryoverhead=2048 \
  42. --conf spark.shuffle.service.enabled=true \
  43. --conf spark.shuffle.service.port=7337 \
  44. --conf spark.shuffle.consolidateFiles=true \
  45. --conf spark.shuffle.manager=sort \
  46. --conf spark.storage.memoryFraction=0.4 \
  47. --conf spark.shuffle.memoryFraction=0.5 \
  48. --conf spark.default.parallelism=200 \
  49. --conf spark.sql.debug.maxToStringFields=100 \
  50. /mnt/disk1/jch/recommend-model/recommend-model-produce/target/recommend-model-produce-jar-with-dependencies.jar \
  51. featureFile:${FEATURE_FILE} \
  52. trainPath:${train_data_path} \
  53. savePath:${PREDICT_RESULT_PATH} \
  54. modelPath:${MODEL_SAVE_PATH} \
  55. labelLogType:0 \
  56. labelLogBase:1.5 \
  57. eta:0.06 gamma:0.0 max_depth:5 num_round:1000 num_worker:${workers} repartition:20