handle_rov.sh 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203
  1. #!/bin/sh
  2. set -ex
  3. source /root/anaconda3/bin/activate py37
  4. # nohup sh handle_rov.sh > "$(date +%Y%m%d_%H%M%S)_handle_rov.log" 2>&1 &
  5. # 原始数据table name
  6. table='alg_recsys_sample_all'
  7. today="$(date +%Y%m%d)"
  8. today_early_3="$(date -d '3 days ago' +%Y%m%d)"
  9. #table='alg_recsys_sample_all_test'
  10. # 处理分区配置 推荐数据间隔一天生产,所以5日0点使用3日0-23点数据生产new模型数据
  11. begin_early_2_Str="$(date -d '2 days ago' +%Y%m%d)"
  12. end_early_2_Str="$(date -d '2 days ago' +%Y%m%d)"
  13. beginHhStr=00
  14. endHhStr=23
  15. max_hour=05
  16. max_minute=00
  17. # 各节点产出hdfs文件绝对路径
  18. # 源数据文件
  19. originDataPath=/dw/recommend/model/13_sample_data/
  20. # 特征值
  21. valueDataPath=/dw/recommend/model/14_feature_data/
  22. # 特征分桶
  23. bucketDataPath=/dw/recommend/model/16_train_data/
  24. # 模型数据路径
  25. MODEL_PATH=/root/joe/recommend-emr-dataprocess/model
  26. # 预测路径
  27. PREDICT_PATH=/root/joe/recommend-emr-dataprocess/predict
  28. # 历史线上正在使用的模型数据路径
  29. LAST_MODEL_HOME=/root/joe/model_online
  30. # 模型数据文件前缀
  31. model_name=aka8
  32. # fm模型
  33. FM_HOME=/root/sunmingze/alphaFM/bin
  34. # hadoop
  35. HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
  36. OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/zhangbo/
  37. # 0 对比AUC 前置对比2日模型数据 与 线上模型数据效果对比,如果2日模型优于线上,更新线上模型
  38. echo "$(date +%Y-%m-%d_%H-%M-%S)----------step0------------开始对比,新:${MODEL_PATH}/${model_name}_${today_early_3}.txt,与线上online模型数据auc效果"
  39. $HADOOP fs -text ${bucketDataPath}/${begin_early_2_Str}/* | ${FM_HOME}/fm_predict -m ${LAST_MODEL_HOME}/model_online.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_online.txt
  40. $HADOOP fs -text ${bucketDataPath}/${begin_early_2_Str}/* | ${FM_HOME}/fm_predict -m ${MODEL_PATH}/${model_name}_${today_early_3}.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_new.txt
  41. online_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_online.txt | /root/sunmingze/AUC/AUC`
  42. if [ $? -ne 0 ]; then
  43. echo "推荐线上模型AUC计算失败"
  44. # /root/anaconda3/bin/python ad/ad_monitor_util.py "线上模型AUC计算失败"
  45. exit 1
  46. fi
  47. new_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_new.txt | /root/sunmingze/AUC/AUC`
  48. if [ $? -ne 0 ]; then
  49. echo "推荐新模型AUC计算失败"
  50. # /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型AUC计算失败"
  51. exit 1
  52. fi
  53. # 1 对比auc数据判断是否更新线上模型
  54. if [ "$online_auc" \< "$new_auc" ]; then
  55. echo "新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  56. # 1.1 模型格式转换
  57. cat ${MODEL_PATH}/${model_name}_${today_early_3}.txt |
  58. awk -F " " '{
  59. if (NR == 1) {
  60. print $1"\t"$2
  61. } else {
  62. split($0, fields, " ");
  63. OFS="\t";
  64. line="" 1; i <= 10 && i <= length(fields); i++) {
  65. line
  66. for (i = = (line ? line "\t" : "") fields[i];
  67. }
  68. print line
  69. }
  70. }' > ${MODEL_PATH}/${model_name}_${today_early_3}_change.txt
  71. if [ $? -ne 0 ]; then
  72. echo "新模型文件格式转换失败"
  73. # /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型文件格式转换失败"
  74. exit 1
  75. fi
  76. # 1.2 模型文件上传OSS
  77. online_model_path=${OSS_PATH}/${model_name}.txt
  78. $HADOOP fs -test -e ${online_model_path}
  79. if [ $? -eq 0 ]; then
  80. echo "数据存在, 先删除。"
  81. $HADOOP fs -rm -r -skipTrash ${online_model_path}
  82. else
  83. echo "数据不存在"
  84. fi
  85. $HADOOP fs -put ${MODEL_PATH}/${model_name}_${today_early_3}_change.txt ${online_model_path}
  86. if [ $? -eq 0 ]; then
  87. echo "推荐模型文件至OSS成功"
  88. else
  89. echo "推荐模型文件至OSS失败"
  90. exit 1
  91. fi
  92. # 1.3 本地保存最新的线上使用的模型,用于下一次的AUC验证
  93. cp -f ${LAST_MODEL_HOME}/model_online.txt ${LAST_MODEL_HOME}/model_online_$(date +\%Y\%m\%d).txt
  94. cp -f ${MODEL_PATH}/${model_name}_${today_early_3}.txt ${LAST_MODEL_HOME}/model_online.txt
  95. if [ $? -ne 0 ]; then
  96. echo "模型备份失败"
  97. # /root/anaconda3/bin/python ad/ad_monitor_util.py "模型备份失败 - 最新模型地址: ${MODEL_PATH}/${model_name}_${today_early_1}.txt"
  98. exit 1
  99. fi
  100. # /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  101. else
  102. echo "新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  103. # /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  104. fi
  105. # 2 判断上游表是否生产完成,最长等待到max_hour点
  106. # shellcheck disable=SC2154
  107. echo "$(date +%Y-%m-%d_%H-%M-%S)----------step1------------开始校验是否生产完数据,分区信息:beginStr:${begin_early_2_Str}${beginHhStr},endStr:${end_early_2_Str}${endHhStr}"
  108. while true; do
  109. python_return_code=$(python /root/joe/recommend-emr-dataprocess/qiaojialiang/checkHiveDataUtil.py --table ${table} --beginStr ${begin_early_2_Str}${beginHhStr} --endStr ${end_early_2_Str}${endHhStr})
  110. echo "python 返回值:${python_return_code}"
  111. if [ $python_return_code -eq 0 ]; then
  112. echo "Python程序返回0,校验存在数据,退出循环。"
  113. break
  114. fi
  115. echo "Python程序返回非0值,不存在数据,等待五分钟后再次调用。"
  116. sleep 300
  117. current_hour=$(date +%H)
  118. current_minute=$(date +%M)
  119. # shellcheck disable=SC2039
  120. if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
  121. echo "最长等待时间已到,失败:${current_hour}-${current_minute}"
  122. exit 1
  123. fi
  124. done
  125. # 3 生产原始数据
  126. echo "$(date +%Y-%m-%d_%H-%M-%S)----------step2------------开始根据${table}生产原始数据"
  127. /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  128. --class com.aliyun.odps.spark.examples.makedata_qiao.makedata_13_originData_20240705 \
  129. --master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
  130. ../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  131. tablePart:64 repartition:32 \
  132. beginStr:${begin_early_2_Str}${beginHhStr} endStr:${end_early_2_Str}${endHhStr} \
  133. savePath:${originDataPath} \
  134. table:${table}
  135. if [ $? -ne 0 ]; then
  136. echo "Spark原始样本生产任务执行失败"
  137. exit 1
  138. else
  139. echo "spark原始样本生产执行成功"
  140. fi
  141. # 4 特征值拼接
  142. echo "$(date +%Y-%m-%d_%H-%M-%S)----------step3------------开始特征值拼接"
  143. /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  144. --class com.aliyun.odps.spark.examples.makedata_qiao.makedata_14_valueData_20240705 \
  145. --master yarn --driver-memory 1G --executor-memory 3G --executor-cores 1 --num-executors 32 \
  146. ../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  147. readPath:${originDataPath} \
  148. savePath:${valueDataPath} \
  149. beginStr:${begin_early_2_Str} endStr:${end_early_2_Str} repartition:1000
  150. if [ $? -ne 0 ]; then
  151. echo "Spark特征值拼接处理任务执行失败"
  152. exit 1
  153. else
  154. echo "spark特征值拼接处理执行成功"
  155. fi
  156. # 5 特征分桶
  157. echo "$(date +%Y-%m-%d_%H-%M-%S)----------step4------------根据特征分桶生产重打分特征数据"
  158. /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  159. --class com.aliyun.odps.spark.examples.makedata_qiao.makedata_16_bucketData_20240705 \
  160. --master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
  161. ../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  162. readPath:${valueDataPath} \
  163. savePath:${bucketDataPath} \
  164. beginStr:${begin_early_2_Str} endStr:${end_early_2_Str} repartition:1000
  165. if [ $? -ne 0 ]; then
  166. echo "Spark特征分桶处理任务执行失败"
  167. exit 1
  168. else
  169. echo "spark特征分桶处理执行成功"
  170. fi
  171. # 6 模型训练
  172. echo "$(date +%Y-%m-%d_%H-%M-%S)----------step5------------开始模型训练"
  173. $HADOOP fs -text ${bucketDataPath}/${begin_early_2_Str}/* | ${FM_HOME}/fm_train -m ${MODEL_PATH}/${model_name}_${begin_early_2_Str}.txt -dim 1,1,8 -im ${LAST_MODEL_HOME}/model_online.txt -core 8
  174. if [ $? -ne 0 ]; then
  175. echo "模型训练失败"
  176. # /root/anaconda3/bin/python ad/ad_monitor_util.py "推荐模型训练失败"
  177. exit 1
  178. fi
  179. echo "$(date +%Y-%m-%d_%H-%M-%S)----------step6------------模型训练完成:${MODEL_PATH}/${model_name}_${begin_early_2_Str}.txt"