123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566 |
- #!/bin/sh
- set -x
- source /root/anaconda3/bin/activate py37
- # 模型保存路径
- model_save_path=""
- MODEL_OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/zhangbo/
- model_name=model_xgb_351_1000_v2
- # 保存模型评估的分析结果
- old_incr_rate_avg=0
- new_incr_rate_avg=0
- declare -A old_score_map
- declare -A new_score_map
- local count=0
- local max_line=10
- local old_total_diff=0
- local new_total_diff=0
- while read -r line && [ ${count} -lt ${max_line} ]; do
- # 使用 ! 取反判断,只有当行中不包含 "cid" 时才执行继续的逻辑
- if [[ "${line}" == *"cid"* ]]; then
- continue
- fi
- read -a numbers <<< "${line}"
- # 分数分别保存
- old_score_map[${numbers[0]}]=${numbers[6]}
- new_score_map[${numbers[0]}]=${numbers[7]}
- old_total_diff=$( echo "${old_total_diff} + ${numbers[6]}" | bc -l )
- new_total_diff=$( echo "${new_total_diff} + ${numbers[7]}" | bc -l )
- count=$((${count} + 1))
- done < "${predict_analyse_file_path}"
- old_incr_rate_avg=$( echo "scale=6; ${old_total_diff} / ${count}" | bc -l )
- new_incr_rate_avg=$( echo "scale=6; ${new_total_diff} / ${count}" | bc -l )
- echo "老模型Top10差异平均值: ${old_incr_rate_avg}"
- echo "新模型Top10差异平均值: ${new_incr_rate_avg}"
- echo "新老模型分数对比: "
- for cid in "${!new_score_map[@]}"; do
- echo "\t CID: $cid, 老模型分数: ${old_score_map[$cid]}, 新模型分数: ${new_score_map[$cid]}"
- done
- local msg="\n\t - 广告模型文件更新完成" \
- "\n\t - 老模型Top10差异平均值: ${old_incr_rate_avg}" \
- "\n\t - 新模型Top10差异平均值: ${new_incr_rate_avg}" \
- "\n\t - 模型在HDFS中的路径: ${model_save_path}" \
- "\n\t - 模型上传路径: ${MODEL_OSS_PATH}/${model_name}.tar.gz"
- local top10_msg = "| CID | 老模型 | 新模型 | \n| ---- | -------- | -------- | "
- for cid in "${!new_score_map[@]}"; do
- top10_msg=="${top10_msg} \n| ${cid} | ${old_score_map[$cid]} | ${new_score_map[$cid]} | "
- done
- /root/anaconda3/bin/python ${sh_path}/ad_monitor_util.py --level info --msg "${msg}" --start "${start_time}" --elapsed "${elapsed}" --top10 "${top10_msg}"
|