01_ad_model_update_everyday.sh 6.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174
  1. #!/bin/sh
  2. set -x
  3. # 0 全局变量/参数
  4. originDataSavePath=/dw/recommend/model/31_ad_sample_data_v3_auto/
  5. bucketFeatureSavePath=/dw/recommend/model/33_ad_train_data_v3_auto/
  6. model_name=model_bkb8_v3
  7. today="$(date +%Y%m%d)"
  8. today_early_1="$(date -d '1 days ago' +%Y%m%d)"
  9. LAST_MODEL_HOME=/root/zhaohp/model_online
  10. MODEL_PATH=/root/zhaohp/recommend-emr-dataprocess/model
  11. PREDICT_PATH=/root/zhaohp/recommend-emr-dataprocess/predict
  12. HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
  13. FM_HOME=/root/sunmingze/alphaFM
  14. OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/zhangbo/
  15. max_hour=17
  16. max_minute=00
  17. OSS_ONLINE_MODEL_PATH=${OSS_PATH}/${model_name}.txt
  18. export SPARK_HOME=/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8
  19. export PATH=$SPARK_HOME/bin:$PATH
  20. export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf
  21. export JAVA_HOME=/usr/lib/jvm/java-1.8.0
  22. ## 1 判断依赖的数据表是否生产完成
  23. #source /root/anaconda3/bin/activate py37
  24. #while true; do
  25. # python_return_code=$(python ad/ad_utils.py --excute_program check_ad_origin_hive --partition ${today} --hh 10)
  26. # if [ $python_return_code -eq 0 ]; then
  27. # echo "Python程序返回0,退出循环。"
  28. # break
  29. # fi
  30. # echo "Python程序返回非0值,等待五分钟后再次调用。"
  31. # sleep 300
  32. # current_hour=$(date +%H)
  33. # current_minute=$(date +%M)
  34. # if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
  35. # echo "最长等待时间已到,失败:${current_hour}-${current_minute}"
  36. # msg="广告特征数据校验失败,大数据分区没有数据: ${today}10"
  37. # /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg}
  38. # exit 1
  39. # fi
  40. #done
  41. #
  42. #
  43. ## 2 原始特征生成
  44. #/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  45. #--class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_31_originData_20240620 \
  46. #--master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
  47. #./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  48. #tablePart:64 repartition:16 \
  49. #beginStr:${today_early_1}00 endStr:${today}10 \
  50. #savePath:${originDataSavePath} \
  51. #table:alg_recsys_ad_sample_all filterHours:00,01,02,03,04,05,06,07 \
  52. #idDefaultValue:0.01
  53. #if [ $? -ne 0 ]; then
  54. # echo "Spark原始样本生产任务执行失败"
  55. # msg="广告特征数据生成失败,Spark原始样本生产任务执行失败"
  56. # /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg}
  57. # exit 1
  58. #else
  59. # echo "spark原始样本生产执行成功"
  60. #fi
  61. #
  62. #
  63. ## 3 特征分桶
  64. #/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  65. #--class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_33_bucketData_20240622 \
  66. #--master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
  67. #./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  68. #beginStr:${today_early_1} endStr:${today} repartition:100 \
  69. #filterNames:adid_,targeting_conversion_ \
  70. #readPath:${originDataSavePath} \
  71. #savePath:${bucketFeatureSavePath}
  72. #if [ $? -ne 0 ]; then
  73. # echo "Spark特征分桶处理任务执行失败"
  74. # msg="广告特征分桶失败,Spark特征分桶处理任务执行失败"
  75. # /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg}
  76. # exit 1
  77. #else
  78. # echo "spark特征分桶处理执行成功"
  79. #fi
  80. # 4 模型训练
  81. $HADOOP fs -text ${bucketFeatureSavePath}/${today_early_1}/* | ${FM_HOME}/bin/fm_train -m ${MODEL_PATH}/${model_name}_${today_early_1}.txt -dim 1,1,8 -im ${LAST_MODEL_HOME}/model_online.txt -core 8
  82. if [ $? -ne 0 ]; then
  83. echo "模型训练失败"
  84. /root/anaconda3/bin/python ad/ad_monitor_util.py "广告模型训练失败"
  85. exit 1
  86. fi
  87. # 5 对比AUC
  88. # 5.1 校验今天10分区的数据是否生产完成
  89. $HADOOP fs -text ${bucketFeatureSavePath}/${today}/* | ${FM_HOME}/bin/fm_predict -m ${LAST_MODEL_HOME}/model_online.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_online.txt
  90. $HADOOP fs -text ${bucketFeatureSavePath}/${today}/* | ${FM_HOME}/bin/fm_predict -m ${MODEL_PATH}/${model_name}_${today_early_1}.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_new.txt
  91. # shellcheck disable=SC2006
  92. online_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_online.txt | /root/sunmingze/AUC/AUC`
  93. if [ $? -ne 0 ]; then
  94. echo "线上模型AUC计算失败"
  95. /root/anaconda3/bin/python ad/ad_monitor_util.py "线上模型AUC计算失败"
  96. exit 1
  97. fi
  98. new_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_new.txt | /root/sunmingze/AUC/AUC`
  99. if [ $? -ne 0 ]; then
  100. echo "新模型AUC计算失败"
  101. /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型AUC计算失败"
  102. exit 1
  103. fi
  104. if [ "$online_auc" \< "$new_auc" ]; then
  105. echo "新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  106. /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  107. else
  108. echo "新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  109. /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  110. exit 1
  111. fi
  112. # 6 模型格式转换
  113. cat ${MODEL_PATH}/${model_name}_${today_early_1}.txt |
  114. awk -F " " '{
  115. if (NR == 1) {
  116. print $1"\t"$2
  117. } else {
  118. split($0, fields, " ");
  119. OFS="\t";
  120. line=""
  121. for (i = 1; i <= 10 && i <= length(fields); i++) {
  122. line = (line ? line "\t" : "") fields[i];
  123. }
  124. print line
  125. }
  126. }' > ${MODEL_PATH}/${model_name}_${today_early_1}_change.txt
  127. if [ $? -ne 0 ]; then
  128. echo "新模型文件格式转换失败"
  129. /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型文件格式转换失败"
  130. exit 1
  131. fi
  132. # 7 模型文件上传OSS
  133. #online_model_path=${OSS_PATH}/${model_name}.txt
  134. #$HADOOP fs -test -e ${online_model_path}
  135. #if [ $? -eq 0 ]; then
  136. # echo "数据存在, 先删除。"
  137. # $HADOOP fs -rm -r ${online_model_path}
  138. #else
  139. # echo "数据不存在"
  140. #fi
  141. #
  142. #$HADOOP fs -put ${MODEL_PATH}/${model_name}_${today_early_1}_change.txt ${online_model_path}
  143. #if [ $? -eq 0 ]; then
  144. # echo "推荐模型文件至OSS成功"
  145. #else
  146. # echo "推荐模型文件至OSS失败"
  147. # /root/anaconda3/bin/python ad/ad_monitor_util.py "推荐模型文件至OSS失败"
  148. # exit 1
  149. #fi
  150. # 7.3 本地保存最新的线上使用的模型,用于下一次的AUC验证
  151. cp -f ${LAST_MODEL_HOME}/model_online.txt ${LAST_MODEL_HOME}/model_online_$(date +\%Y\%m\%d).txt
  152. cp -f ${MODEL_PATH}/${model_name}_${today_early_1}.txt ${LAST_MODEL_HOME}/model_online.txt
  153. if [ $? -ne 0 ]; then
  154. echo "模型备份失败"
  155. /root/anaconda3/bin/python ad/ad_monitor_util.py "模型备份失败 - 最新模型地址: ${MODEL_PATH}/${model_name}_${today_early_1}.txt"
  156. exit 1
  157. fi
  158. # 32 16 * * * cd /root/zhangbo/recommend-emr-dataprocess && /bin/sh ./ad/01_ad_model_update_everyday.sh > logs/01_update_eventday$(date +\%Y-\%m-\%d_\%H).log 2>&1