01_ad_model_update_everyday.sh 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250
  1. #!/bin/sh
  2. set -x
  3. # 0 全局变量/参数
  4. originDataSavePath=/dw/recommend/model/31_ad_sample_data_v3_auto/
  5. bucketFeatureSavePath=/dw/recommend/model/33_ad_train_data_v3_auto/
  6. model_name=model_bkb8_v3
  7. today="$(date +%Y%m%d)"
  8. today_early_1="$(date -d '1 days ago' +%Y%m%d)"
  9. LAST_MODEL_HOME=/root/zhaohp/model_online
  10. MODEL_PATH=/root/zhaohp/recommend-emr-dataprocess/model
  11. PREDICT_PATH=/root/zhaohp/recommend-emr-dataprocess/predict
  12. HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
  13. FM_HOME=/root/sunmingze/alphaFM
  14. OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/zhangbo/
  15. max_hour=17
  16. max_minute=00
  17. export SPARK_HOME=/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8
  18. export PATH=$SPARK_HOME/bin:$PATH
  19. export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf
  20. export JAVA_HOME=/usr/lib/jvm/java-1.8.0
  21. start_time=$(date "+%Y-%m-%d %H:%M:%S")
  22. elapsed=0
  23. LOG_PREFIX=广告模型自动更新任务
  24. # 1 判断依赖的数据表是否生产完成
  25. source /root/anaconda3/bin/activate py37
  26. while true; do
  27. python_return_code=$(python ad/ad_utils.py --excute_program check_ad_origin_hive --partition ${today} --hh 10)
  28. elapsed=$(($(date +%s -d "${start_time}") - $(date +%s -d "+%Y-%m-%d %H:%M:%S")))
  29. if [ "$python_return_code" -eq 0 ]; then
  30. break
  31. fi
  32. echo "Python程序返回非0值,等待五分钟后再次调用。"
  33. sleep 300
  34. current_hour=$(date +%H)
  35. current_minute=$(date +%M)
  36. if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
  37. msg="大数据数据生产校验失败 \n\t分区: ${today}10"
  38. echo -e "$LOG_PREFIX -- 大数据数据生产校验 -- ${msg}"
  39. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  40. exit 1
  41. fi
  42. done
  43. echo "$LOG_PREFIX -- 大数据数据生产校验 -- 大数据数据生产校验通过: 耗时 $elapsed"
  44. # 2 原始特征生成
  45. step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  46. /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  47. --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_31_originData_20240620 \
  48. --master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
  49. ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  50. tablePart:64 repartition:16 \
  51. beginStr:${today_early_1}00 endStr:${today}10 \
  52. savePath:${originDataSavePath} \
  53. table:alg_recsys_ad_sample_all filterHours:00,01,02,03,04,05,06,07 \
  54. idDefaultValue:0.01
  55. step_elapsed=$(($(date +%s -d "$step_start_time") - $(date +%s -d "+%Y-%m-%d %H:%M:%S")))
  56. if [ $? -ne 0 ]; then
  57. msg="Spark原始样本生产任务执行失败"
  58. echo "$LOG_PREFIX -- 原始样本生产 -- $msg: 耗时 $step_elapsed"
  59. elapsed=$(($(date +%s -d "$start_time") - $(date +%s -d "+%Y-%m-%d %H:%M:%S")))
  60. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  61. exit 1
  62. fi
  63. echo "$LOG_PREFIX -- 原始样本生产 -- Spark原始样本生产任务执行成功: 耗时 $step_elapsed"
  64. # 3 特征分桶
  65. step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  66. /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  67. --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_33_bucketData_20240622 \
  68. --master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
  69. ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  70. beginStr:${today_early_1} endStr:${today} repartition:100 \
  71. filterNames:adid_,targeting_conversion_ \
  72. readPath:${originDataSavePath} \
  73. savePath:${bucketFeatureSavePath}
  74. step_elapsed=$(($(date +%s -d "$step_start_time") - $(date +%s -d "+%Y-%m-%d %H:%M:%S")))
  75. if [ $? -ne 0 ]; then
  76. msg="Spark特征分桶处理任务执行失败"
  77. echo "$LOG_PREFIX -- 特征分桶处理任务 -- $msg: 耗时 $step_elapsed"
  78. elapsed=$(($(date +%s -d "$start_time") - $(date +%s -d "+%Y-%m-%d %H:%M:%S")))
  79. /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg}
  80. exit 1
  81. fi
  82. echo "$LOG_PREFIX -- 特征分桶处理任务 -- spark特征分桶处理执行成功: 耗时 $step_elapsed"
  83. # 4 模型训练
  84. step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  85. $HADOOP fs -text ${bucketFeatureSavePath}/${today_early_1}/* | ${FM_HOME}/bin/fm_train -m ${MODEL_PATH}/${model_name}_${today_early_1}.txt -dim 1,1,8 -im ${LAST_MODEL_HOME}/model_online.txt -core 8
  86. step_elapsed=$(($(date +%s -d "$step_start_time") - $(date +%s -d "+%Y-%m-%d %H:%M:%S")))
  87. if [ $? -ne 0 ]; then
  88. msg "模型训练失败"
  89. echo "$LOG_PREFIX -- 原始样本生产 -- $msg: 耗时 $step_elapsed"
  90. elapsed=$(($(date +%s -d "$start_time") - $(date +%s -d "+%Y-%m-%d %H:%M:%S")))
  91. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  92. exit 1
  93. fi
  94. echo "$LOG_PREFIX -- 原始样本生产 -- 模型训练完成: 耗时 $step_elapsed"
  95. # 5 对比AUC
  96. $HADOOP fs -text ${bucketFeatureSavePath}/${today}/* | ${FM_HOME}/bin/fm_predict -m ${LAST_MODEL_HOME}/model_online.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_online.txt
  97. $HADOOP fs -text ${bucketFeatureSavePath}/${today}/* | ${FM_HOME}/bin/fm_predict -m ${MODEL_PATH}/${model_name}_${today_early_1}.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_new.txt
  98. # 5.1 计算线上模型的AUC
  99. step5_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  100. step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  101. online_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_online.txt | /root/sunmingze/AUC/AUC`
  102. elapsed=$(($(date +%s -d "step_start_time") - $(date +%s -d "+%Y-%m-%d %H:%M:%S")))
  103. if [ $? -ne 0 ]; then
  104. msg="线上模型AUC计算失败"
  105. echo "$LOG_PREFIX -- 线上模型AUC计算 -- $msg: 耗时 $step_elapsed"
  106. elapsed=$(($(date +%s -d "$start_time") - $(date +%s -d "+%Y-%m-%d %H:%M:%S")))
  107. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  108. exit 1
  109. fi
  110. echo "$LOG_PREFIX -- 线上模型AUC计算 -- 线上模型AUC计算完成: 耗时 $step_elapsed"
  111. # 5.2 计算新模型的AUC
  112. step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  113. new_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_new.txt | /root/sunmingze/AUC/AUC`
  114. elapsed=$(($(date +%s -d "step_start_time") - $(date +%s -d "+%Y-%m-%d %H:%M:%S")))
  115. if [ $? -ne 0 ]; then
  116. msg="新模型AUC计算失败"
  117. echo "$LOG_PREFIX -- 新模型AUC计算 -- $msg: 耗时 $step_elapsed"
  118. elapsed=$(($(date +%s -d "$start_time") - $(date +%s -d "+%Y-%m-%d %H:%M:%S")))
  119. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  120. exit 1
  121. fi
  122. echo "$LOG_PREFIX -- 新模型AUC计算 -- 新模型AUC计算完成: 耗时 $step_elapsed"
  123. echo "AUC比对: 线上模型的AUC: ${online_auc}, 新模型的AUC: ${new_auc}"
  124. # 5.3 计算新模型与线上模型的AUC差值的绝对值
  125. auc_diff=$(echo "$online_auc - $new_auc" | bc -l)
  126. auc_diff_abs=$(echo "sqrt(($auc_diff)^2)" | bc -l)
  127. step5_elapsed=$(($(date +%s -d "$step5_start_time") - $(date +%s -d "+%Y-%m-%d %H:%M:%S")))
  128. # 5.4 如果差值的绝对值小于0.005且新模型的AUC大于0.73, 则更新模型
  129. if (( $(echo "${online_auc} <= ${new_auc}" | bc -l) )); then
  130. msg="新模型优于线上模型 \n\t线上模型AUC: ${online_auc} \n\t新模型AUC: ${new_auc}"
  131. echo -e "$LOG_PREFIX -- AUC对比 -- $msg: 耗时 $step5_elapsed"
  132. elif (( $(echo "$auc_diff_abs < 0.005" | bc -l) )) && (( $(echo "$new_auc >= 0.73" | bc -l) )); then
  133. msg="新模型与线上模型差值小于阈值0.005 \n\t线上模型AUC: ${online_auc} \n\t新模型AUC: ${new_auc} \n\t差值为: $auc_diff_abs"
  134. echo -e "$LOG_PREFIX -- AUC对比 -- $msg: 耗时 $step5_elapsed"
  135. else
  136. msg="新模型与线上模型差值大于等于阈值0.005 \n\t线上模型AUC: ${online_auc} \n\t新模型AUC: ${new_auc} \n\t差值为: $auc_diff_abs"
  137. echo -e "$LOG_PREFIX -- AUC对比 -- $msg: 耗时 $step5_elapsed"
  138. elapsed=$(($(date +%s -d "$start_time") - $(date +%s -d "+%Y-%m-%d %H:%M:%S")))
  139. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  140. exit 1
  141. fi
  142. # 6 模型格式转换
  143. step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  144. change_txt_path=${MODEL_PATH}/${model_name}_${today_early_1}_change.txt
  145. cat ${MODEL_PATH}/${model_name}_${today_early_1}.txt |
  146. awk -F " " '{
  147. if (NR == 1) {
  148. print $1"\t"$2
  149. } else {
  150. split($0, fields, " ");
  151. OFS="\t";
  152. line=""
  153. for (i = 1; i <= 10 && i <= length(fields); i++) {
  154. line = (line ? line "\t" : "") fields[i];
  155. }
  156. print line
  157. }
  158. }' > "$change_txt_path"
  159. step_elapsed=$(($(date +%s -d "step_start_time") - $(date +%s -d "+%Y-%m-%d %H:%M:%S")))
  160. if [ $? -ne 0 ]; then
  161. msg="新模型文件格式转换失败"
  162. echo -e "$LOG_PREFIX -- AUC对比 -- $msg: 耗时 $step_elapsed"
  163. elapsed=$(($(date +%s -d "$start_time") - $(date +%s -d "+%Y-%m-%d %H:%M:%S")))
  164. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  165. exit 1
  166. fi
  167. echo -e "$LOG_PREFIX -- 模型文件格式转换 -- 转换后的路径为 [$change_txt_path]: 耗时 $step_elapsed"
  168. ## 7 模型文件上传OSS
  169. #step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  170. #online_model_path=${OSS_PATH}/${model_name}.txt
  171. #$HADOOP fs -test -e ${online_model_path}
  172. #if [ $? -eq 0 ]; then
  173. # echo "数据存在, 先删除。"
  174. # $HADOOP fs -rm -r -skipTrash ${online_model_path}
  175. #else
  176. # echo "数据不存在"
  177. #fi
  178. #$HADOOP fs -put ${MODEL_PATH}/${model_name}_${today_early_1}_change.txt ${online_model_path}
  179. #step_elapsed=$(($(date +%s -d "step_start_time") - $(date +%s -d "+%Y-%m-%d %H:%M:%S")))
  180. #if [ $? -ne 0 ]; then
  181. # msg="广告模型文件至OSS失败, OSS模型文件路径: $online_model_path"
  182. # echo -e "$LOG_PREFIX -- 模型文件推送至OSS -- $msg: 耗时 $step_elapsed"
  183. # elapsed=$(($(date +%s -d "$start_time") - $(date +%s -d "+%Y-%m-%d %H:%M:%S")))
  184. # /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  185. # exit 1
  186. #fi
  187. #echo -e "$LOG_PREFIX -- 模型文件推送至OSS -- 广告模型文件至OSS成功, OSS模型文件路径 $online_model_path: 耗时 $step_elapsed"
  188. ## 8 本地保存最新的线上使用的模型,用于下一次的AUC验证
  189. #step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  190. #cp -f ${LAST_MODEL_HOME}/model_online.txt ${LAST_MODEL_HOME}/model_online_$(date +\%Y\%m\%d).txt
  191. #cp -f ${MODEL_PATH}/${model_name}_${today_early_1}.txt ${LAST_MODEL_HOME}/model_online.txt
  192. #step_elapsed=$(($(date +%s -d "step_start_time") - $(date +%s -d "+%Y-%m-%d %H:%M:%S")))
  193. #if [ $? -ne 0 ]; then
  194. # msg="模型备份失败"
  195. # echo -e "$LOG_PREFIX -- 模型备份 -- $msg: 耗时 $step_elapsed"
  196. # elapsed=$(($(date +%s -d "$start_time") - $(date +%s -d "+%Y-%m-%d %H:%M:%S")))
  197. # /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  198. # exit 1
  199. #fi
  200. #echo -e "$LOG_PREFIX -- 模型备份 -- 模型备份完成: 耗时 $step_elapsed"
  201. msg="广告模型文件更新完成 \n\t \n\t 新模型AUC: $new_auc \n\t 线上模型AUC: $online_auc AUC差值: $auc_diff_abs \n\t 模型上传路径: $online_model_path \n\t"
  202. elapsed=$(($(date +%s -d "$start_time") - $(date +%s -d "+%Y-%m-%d %H:%M:%S")))
  203. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  204. # 32 16 * * * cd /root/zhangbo/recommend-emr-dataprocess && /bin/sh ./ad/01_ad_model_update_everyday.sh > logs/01_update_eventday$(date +\%Y-\%m-\%d_\%H).log 2>&1