123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657 |
- import gzip
- import pandas as pd
- from hdfs import InsecureClient
- client = InsecureClient("http://master-1-1.c-7f31a3eea195cb73.cn-hangzhou.emr.aliyuncs.com:9870", user="spark")
- def read_predict(hdfs_path: str) -> list:
- result = []
- for file in client.list(hdfs_path):
- with client.read(hdfs_path + file) as reader:
- with gzip.GzipFile(fileobj=reader, mode="rb") as gz_file:
- for line in gz_file.read().decode("utf-8").split("\n"):
- split = line.split("\t")
- if len(split) != 4:
- continue
- cid = split[3].split("_")[0]
- label = split[0]
- score = split[2].replace("[", "").replace("]", "").split(",")[1]
- result.append({
- "cid": cid,
- "label": label,
- "score": score
- })
- return result
- def _main():
- model1_result = read_predict("/dw/recommend/model/34_ad_predict_data/20241004_351_0927_1003_1000/")
- model2_result = read_predict("/dw/recommend/model/34_ad_predict_data/20241004_351_0927_1003_1000/")
- m1 = pd.DataFrame(model1_result)
- g1 = m1.groupby("cid").agg(count=('cid', 'size'), average_value=('score', 'mean'))
- # 获取出现次数最多的十个 cid
- most_common_cid1 = g1.nlargest(10, 'count')
- print(most_common_cid1)
- m2 = pd.DataFrame(model2_result)
- g2 = m2.groupby("cid").agg(count=('cid', 'size'), average_value=('score', 'mean'))
- # 获取出现次数最多的十个 cid
- most_common_cid2 = g2.nlargest(10, 'count')
- print(most_common_cid2)
- if __name__ == '__main__':
- # parser = argparse.ArgumentParser(description="model_predict_analyse.py")
- # parser.add_argument("-p", "--predict_path_list", type=list, help="config file path")
- # args = parser.parse_args()
- #
- # predict_path_list = args.predict_path_list
- # # 判断参数是否正常
- # if len(predict_path_list) != 2:
- # sys.exit(1)
- _main()
|