01_ad_model_update_everyday.sh 5.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135
  1. #!/bin/sh
  2. set -x
  3. # 0 全局变量/参数
  4. originDataSavePath=/dw/recommend/model/31_ad_sample_data_auto/
  5. bucketFeatureSavePath=/dw/recommend/model/33_ad_train_data_nosparse_auto/
  6. model_name=model_lr0
  7. today="$(date +%Y%m%d)"
  8. today_early_1="$(date -d '1 days ago' +%Y%m%d)"
  9. MODEL_PATH=/root/zhaohp/recommend-emr-dataprocess/model
  10. PREDICT_PATH=/root/zhaohp/recommend-emr-dataprocess/predict
  11. HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
  12. FM_HOME=/root/sunmingze/alphaFM
  13. OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/ad_model/
  14. max_hour=16
  15. max_minute=00
  16. # 1 判断依赖的数据表是否生产完成
  17. source /root/anaconda3/bin/activate py37
  18. while true; do
  19. python_return_code=$(python ad/ad_utils.py --excute_program check_ad_origin_hive --partition ${today} --hh 10)
  20. if [ $python_return_code -eq 0 ]; then
  21. echo "Python程序返回0,退出循环。"
  22. break
  23. fi
  24. echo "Python程序返回非0值,等待五分钟后再次调用。"
  25. sleep 300
  26. current_hour=$(date +%H)
  27. current_minute=$(date +%M)
  28. if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
  29. echo "最长等待时间已到,失败:${current_hour}-${current_minute}"
  30. msg="广告特征数据校验失败,大数据分区没有数据: ${today}10"
  31. /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg}
  32. exit 1
  33. fi
  34. done
  35. # 2 原始特征生成
  36. /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  37. --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_31_originData_20240620 \
  38. --master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
  39. ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  40. tablePart:64 repartition:32 \
  41. beginStr:${today_early_1}08 endStr:${today}10 \
  42. savePath:${originDataSavePath} \
  43. table:alg_recsys_ad_sample_all filterHours:00,01,02,03,04,05,06,07 \
  44. idDefaultValue:0.01
  45. if [ $? -ne 0 ]; then
  46. echo "Spark原始样本生产任务执行失败"
  47. msg="广告特征数据生成失败,Spark原始样本生产任务执行失败"
  48. /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg}
  49. exit 1
  50. else
  51. echo "spark原始样本生产执行成功"
  52. fi
  53. # 3 特征分桶
  54. /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  55. --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_33_bucketData_20240622 \
  56. --master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
  57. ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  58. beginStr:${today_early_1} endStr:${today} repartition:400 \
  59. filterNames:adid_,targeting_conversion_ \
  60. bucketFileName:20240620_ad_bucket_249_fix.txt \
  61. readPath:${originDataSavePath} \
  62. savePath:${bucketFeatureSavePath}
  63. if [ $? -ne 0 ]; then
  64. echo "Spark特征分桶处理任务执行失败"
  65. msg="广告特征分桶失败,Spark特征分桶处理任务执行失败"
  66. /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg}
  67. exit 1
  68. else
  69. echo "spark特征分桶处理执行成功"
  70. fi
  71. # 4 模型训练
  72. $HADOOP fs -text ${bucketFeatureSavePath}/${today_early_1}/* | ${FM_HOME}/fm_train -m ${MODEL_PATH}/${model_name}_${today_early_1}.txt -dim 1,1,8 -core 8
  73. if [ $? -ne 0 ]; then
  74. echo "模型训练失败"
  75. /root/anaconda3/bin/python ad/ad_monitor_util.py "广告模型训练失败"
  76. exit 1
  77. fi
  78. # 5 对比AUC
  79. # 5.1 校验今天10分区的数据是否生产完成
  80. online_model=${MODEL_PATH}/model_online.txt
  81. $HADOOP fs -text ${bucketFeatureSavePath}/${today}/* | /root/sunmingze/alphaFM/bin/fm_predict -m ${MODEL_PATH}/${online_model} -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_online.txt
  82. $HADOOP fs -text ${bucketFeatureSavePath}/${today}/* | /root/sunmingze/alphaFM/bin/fm_predict -m ${MODEL_PATH}/${model_name}_${today_early_1}.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_new.txt
  83. # shellcheck disable=SC2006
  84. online_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_online.txt | /root/sunmingze/AUC/AUC`
  85. new_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_new.txt | /root/sunmingze/AUC/AUC`
  86. if [ "$online_auc" \< "$new_auc" ]; then
  87. echo "新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  88. /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  89. else
  90. echo "新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  91. /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  92. exit 1
  93. fi
  94. # 6 模型格式转换
  95. #cat ${MODEL_PATH}/${model_name}_${today_early_1}.txt \
  96. #| sed '1d' | awk -F " " '{if($2!="0") print $1"\t"$2}' \
  97. #> ${MODEL_PATH}/${model_name}_${today_early_1}_change.txt
  98. # 7 模型文件上传OSS
  99. #online_model_path=${OSS_PATH}/${model_name}.txt
  100. #$HADOOP fs -test -e ${online_model_path}
  101. #if [ $? -eq 0 ]; then
  102. # echo "数据存在, 先删除。"
  103. # $HADOOP fs -rm -r ${online_model_path}
  104. #else
  105. # echo "数据不存在"
  106. #fi
  107. #
  108. #$HADOOP fs -put ${MODEL_PATH}/${model_name}_${today_early_1}_change.txt ${online_model_path}
  109. #if [ $? -eq 0 ]; then
  110. # echo "推荐模型文件至OSS成功"
  111. #else
  112. # echo "推荐模型文件至OSS失败"
  113. # /root/anaconda3/bin/python ad/ad_monitor_util.py "推荐模型文件至OSS失败"
  114. # exit 1
  115. #fi
  116. # 7.3 本地保存最新的线上使用的模型,用于下一次的AUC验证
  117. cp ${MODEL_PATH}/${model_name}_${today_early_1}.txt ${MODEL_PATH}/model_online.txt