01_ad_model_update_everyday.sh 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289
  1. #!/bin/sh
  2. set -x
  3. # 0 全局变量/参数
  4. originDataSavePath=/dw/recommend/model/31_ad_sample_data_v3_auto
  5. bucketFeatureSavePath=/dw/recommend/model/33_ad_train_data_v3_auto
  6. model_name=model_bkb8_v3
  7. today="$(date +%Y%m%d)"
  8. today_early_1="$(date -d '1 days ago' +%Y%m%d)"
  9. today_early_2="$(date -d '2 days ago' +%Y%m%d)"
  10. LAST_MODEL_HOME=/root/zhaohp/model_online
  11. MODEL_PATH=/root/zhaohp/recommend-emr-dataprocess/model
  12. PREDICT_PATH=/root/zhaohp/recommend-emr-dataprocess/predict
  13. HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
  14. FM_HOME=/root/sunmingze/alphaFM
  15. OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/zhangbo
  16. max_hour=17
  17. max_minute=00
  18. export SPARK_HOME=/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8
  19. export PATH=$SPARK_HOME/bin:$PATH
  20. export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf
  21. export JAVA_HOME=/usr/lib/jvm/java-1.8.0
  22. start_time=$(date "+%Y-%m-%d %H:%M:%S")
  23. elapsed=0
  24. LOG_PREFIX=广告模型自动更新任务
  25. # 1 判断依赖的数据表是否生产完成
  26. source /root/anaconda3/bin/activate py37
  27. while true; do
  28. python_return_code=$(python ad/ad_utils.py --excute_program check_ad_origin_hive --partition ${today} --hh 10)
  29. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  30. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  31. if [ "$python_return_code" -eq 0 ]; then
  32. break
  33. fi
  34. echo "Python程序返回非0值,等待五分钟后再次调用。"
  35. sleep 300
  36. current_hour=$(date +%H)
  37. current_minute=$(date +%M)
  38. if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
  39. msg="大数据数据生产校验失败, 分区: ${today}10"
  40. echo -e "$LOG_PREFIX -- 大数据数据生产校验 -- ${msg}: 耗时 $elapsed"
  41. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  42. exit 1
  43. fi
  44. done
  45. echo "$LOG_PREFIX -- 大数据数据生产校验 -- 大数据数据生产校验通过: 耗时 $elapsed"
  46. # 2 原始特征生成
  47. step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  48. /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  49. --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_31_originData_20240620 \
  50. --master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
  51. ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  52. tablePart:64 repartition:16 \
  53. beginStr:${today_early_1}00 endStr:${today}10 \
  54. savePath:${originDataSavePath} \
  55. table:alg_recsys_ad_sample_all filterHours:00,01,02,03,04,05,06,07 \
  56. idDefaultValue:0.01
  57. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  58. step_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
  59. if [ $? -ne 0 ]; then
  60. msg="Spark原始样本生产任务执行失败"
  61. echo "$LOG_PREFIX -- 原始样本生产 -- $msg: 耗时 $step_elapsed"
  62. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  63. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  64. exit 1
  65. fi
  66. echo "$LOG_PREFIX -- 原始样本生产 -- Spark原始样本生产任务执行成功: 耗时 $step_elapsed"
  67. # 3 特征分桶
  68. step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  69. /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  70. --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_33_bucketData_20240622 \
  71. --master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
  72. ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  73. beginStr:${today_early_1} endStr:${today} repartition:100 \
  74. filterNames:adid_,targeting_conversion_ \
  75. readPath:${originDataSavePath} \
  76. savePath:${bucketFeatureSavePath}
  77. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  78. step_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
  79. if [ $? -ne 0 ]; then
  80. msg="Spark特征分桶处理任务执行失败"
  81. echo "$LOG_PREFIX -- 特征分桶处理任务 -- $msg: 耗时 $step_elapsed"
  82. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  83. /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg}
  84. exit 1
  85. fi
  86. echo "$LOG_PREFIX -- 特征分桶处理任务 -- spark特征分桶处理执行成功: 耗时 $step_elapsed"
  87. # 4 模型训练
  88. step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  89. $HADOOP fs -text ${bucketFeatureSavePath}/${today_early_1}/* | ${FM_HOME}/bin/fm_train -m ${MODEL_PATH}/${model_name}_${today_early_1}.txt -dim 1,1,8 -im ${LAST_MODEL_HOME}/model_online.txt -core 8
  90. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  91. step_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
  92. if [ $? -ne 0 ]; then
  93. msg "模型训练失败"
  94. echo "$LOG_PREFIX -- 原始样本生产 -- $msg: 耗时 $step_elapsed"
  95. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  96. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  97. exit 1
  98. fi
  99. echo "$LOG_PREFIX -- 原始样本生产 -- 模型训练完成: 耗时 $step_elapsed"
  100. # 5 对比AUC
  101. step5_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  102. # 5.1 计算线上模型的AUC
  103. step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  104. $HADOOP fs -text ${bucketFeatureSavePath}/${today}/* | ${FM_HOME}/bin/fm_predict -m ${LAST_MODEL_HOME}/model_online.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_online.txt
  105. online_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_online.txt | /root/sunmingze/AUC/AUC`
  106. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  107. step_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
  108. if [ $? -ne 0 ]; then
  109. msg="线上模型AUC计算失败"
  110. echo "$LOG_PREFIX -- 线上模型AUC计算 -- $msg: 耗时 $step_elapsed"
  111. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  112. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  113. exit 1
  114. fi
  115. echo "$LOG_PREFIX -- 线上模型AUC计算 -- 线上模型AUC计算完成: 耗时 $step_elapsed"
  116. # 5.2 计算新模型的AUC
  117. step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  118. $HADOOP fs -text ${bucketFeatureSavePath}/${today}/* | ${FM_HOME}/bin/fm_predict -m ${MODEL_PATH}/${model_name}_${today_early_1}.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_new.txt
  119. new_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_new.txt | /root/sunmingze/AUC/AUC`
  120. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  121. step_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
  122. if [ $? -ne 0 ]; then
  123. msg="新模型AUC计算失败"
  124. echo "$LOG_PREFIX -- 新模型AUC计算 -- $msg: 耗时 $step_elapsed"
  125. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  126. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  127. exit 1
  128. fi
  129. echo "$LOG_PREFIX -- 新模型AUC计算 -- 新模型AUC计算完成: 耗时 $step_elapsed"
  130. echo "AUC比对: 线上模型的AUC: ${online_auc}, 新模型的AUC: ${new_auc}"
  131. # 5.3 计算新模型与线上模型的AUC差值的绝对值
  132. auc_diff=$(echo "$online_auc - $new_auc" | bc -l)
  133. auc_diff_abs=$(echo "sqrt(($auc_diff)^2)" | bc -l)
  134. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  135. step5_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step5_start_time")))
  136. # 5.4 如果差值的绝对值小于0.005且新模型的AUC大于0.73, 则更新模型
  137. if (( $(echo "${online_auc} <= ${new_auc}" | bc -l) )); then
  138. msg="新模型优于线上模型 \n\t线上模型AUC: ${online_auc} \n\t新模型AUC: ${new_auc}"
  139. echo -e "$LOG_PREFIX -- AUC对比 -- $msg: 耗时 $step5_elapsed"
  140. elif (( $(echo "$auc_diff_abs < 0.005" | bc -l) )) && (( $(echo "$new_auc >= 0.73" | bc -l) )); then
  141. msg="新模型与线上模型差值小于阈值0.005 \n\t线上模型AUC: ${online_auc} \n\t新模型AUC: ${new_auc} \n\t差值为: $auc_diff_abs"
  142. echo -e "$LOG_PREFIX -- AUC对比 -- $msg: 耗时 $step5_elapsed"
  143. else
  144. msg="新模型与线上模型差值大于等于阈值0.005或新模型的AUC小于0.73 \n\t线上模型AUC: ${online_auc} \n\t新模型AUC: ${new_auc} \n\t差值为: $auc_diff"
  145. echo -e "$LOG_PREFIX -- AUC对比 -- $msg: 耗时 $step5_elapsed"
  146. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  147. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  148. exit 1
  149. fi
  150. # 5.5 使用前一天线上模型和前一天的新模型对前一天的数据进行预测并计算AUC
  151. yesterday_online_model=${LAST_MODEL_HOME}/model_online.txt
  152. # 5.5.1 判断model_online文件的生成时间,如果是昨天生成的则表示模型有更新
  153. # ${MODEL_PATH}/${model_name}_${today_early_1}.txt 和 ${LAST_MODEL_HOME}/model_online_$(date +\%Y\%m\%d).txt
  154. file_creation_date=$(stat -c %Y "$yesterday_online_model")
  155. file_creation_date_format=$(date -d "@$file_creation_date" +%Y%m%d)
  156. if [ "$file_creation_date_format" == "$today_early_1" ]; then
  157. yesterday_online_model=${LAST_MODEL_HOME}/model_online_${today_early_1}.txt
  158. fi
  159. # 5.5.2 使用昨天的线上模型,进行预测
  160. echo "前一天的线上模型路径: $yesterday_online_model"
  161. $HADOOP fs -text ${bucketFeatureSavePath}/${today_early_1}/* | ${FM_HOME}/bin/fm_predict -m "$yesterday_online_model" -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today_early_1}_online_all.txt
  162. yesterday_online_auc=`cat ${PREDICT_PATH}/${model_name}_${today_early_1}_online_all.txt | /root/sunmingze/AUC/AUC`
  163. # 5.5.3 使用昨天的新模型,进行预测
  164. $HADOOP fs -text ${bucketFeatureSavePath}/${today_early_1}/* | ${FM_HOME}/bin/fm_predict -m ${MODEL_PATH}/${model_name}_${today_early_2}.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today_early_1}_new_all.txt
  165. yesterday_new_auc=`cat ${PREDICT_PATH}/${model_name}_${today_early_1}_new_all.txt | /root/sunmingze/AUC/AUC`
  166. # 6 模型格式转换
  167. step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  168. change_txt_path=${MODEL_PATH}/${model_name}_${today_early_1}_change.txt
  169. cat ${MODEL_PATH}/${model_name}_${today_early_1}.txt |
  170. awk -F " " '{
  171. if (NR == 1) {
  172. print $1"\t"$2
  173. } else {
  174. split($0, fields, " ");
  175. OFS="\t";
  176. line=""
  177. for (i = 1; i <= 10 && i <= length(fields); i++) {
  178. line = (line ? line "\t" : "") fields[i];
  179. }
  180. print line
  181. }
  182. }' > "$change_txt_path"
  183. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  184. step_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
  185. if [ $? -ne 0 ]; then
  186. msg="新模型文件格式转换失败"
  187. echo -e "$LOG_PREFIX -- AUC对比 -- $msg: 耗时 $step_elapsed"
  188. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  189. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  190. exit 1
  191. fi
  192. echo -e "$LOG_PREFIX -- 模型文件格式转换 -- 转换后的路径为 [$change_txt_path]: 耗时 $step_elapsed"
  193. # 7 模型文件上传OSS
  194. step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  195. online_model_path=${OSS_PATH}/${model_name}.txt
  196. $HADOOP fs -test -e ${online_model_path}
  197. if [ $? -eq 0 ]; then
  198. echo "删除已存在的OSS模型文件"
  199. $HADOOP fs -rm -r -skipTrash ${online_model_path}
  200. fi
  201. $HADOOP fs -put ${MODEL_PATH}/${model_name}_${today_early_1}_change.txt ${online_model_path}
  202. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  203. step_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
  204. if [ $? -ne 0 ]; then
  205. msg="广告模型文件至OSS失败, OSS模型文件路径: $online_model_path"
  206. echo -e "$LOG_PREFIX -- 模型文件推送至OSS -- $msg: 耗时 $step_elapsed"
  207. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  208. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  209. exit 1
  210. fi
  211. echo -e "$LOG_PREFIX -- 模型文件推送至OSS -- 广告模型文件至OSS成功, OSS模型文件路径 $online_model_path: 耗时 $step_elapsed"
  212. # 8 本地保存最新的线上使用的模型,用于下一次的AUC验证
  213. step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  214. # 将之前的线上模型进行备份,表示从上一个备份时间到当前时间内,使用的线上模型都是此文件
  215. # 假设当前是07-11,上一次备份时间为07-07。备份之后表示从07-07下午至07-11上午线上使用的模型文件都是model_online_20240711.txt
  216. cp -f ${LAST_MODEL_HOME}/model_online.txt ${LAST_MODEL_HOME}/model_online_${today}.txt
  217. cp -f ${MODEL_PATH}/${model_name}_${today_early_1}.txt ${LAST_MODEL_HOME}/model_online.txt
  218. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  219. step_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
  220. if [ $? -ne 0 ]; then
  221. msg="模型备份失败"
  222. echo -e "$LOG_PREFIX -- 模型备份 -- $msg: 耗时 $step_elapsed"
  223. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  224. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  225. exit 1
  226. fi
  227. echo -e "$LOG_PREFIX -- 模型备份 -- 模型备份完成: 耗时 $step_elapsed"
  228. # 9 任务完成通知
  229. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  230. msg="\n\t - 广告模型文件更新完成 \n\t - 前一天线上模型全天数据AUC: $yesterday_online_auc \n\t - 前一天新模型全天数据AUC: $yesterday_new_auc \n\t - 新模型AUC: $new_auc \n\t - 线上模型AUC: $online_auc \n\t - AUC差值: $auc_diff \n\t - 模型上传路径: $online_model_path"
  231. echo -e "$LOG_PREFIX -- 模型更新完成 -- $msg: 耗时 $step_elapsed"
  232. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  233. /root/anaconda3/bin/python ad/ad_monitor_util.py --level info --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  234. # 15 15 * * * cd /root/zhaohp/recommend-emr-dataprocess && /bin/sh ./ad/01_ad_model_update_everyday.sh > logs/01_update_eventday_$(date +\%Y-\%m-\%d_\%H-\%M).log 2>&1