01_ad_model_update_everyday.sh 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266
  1. #!/bin/sh
  2. set -x
  3. # 0 全局变量/参数
  4. originDataSavePath=/dw/recommend/model/31_ad_sample_data_v3_auto/
  5. bucketFeatureSavePath=/dw/recommend/model/33_ad_train_data_v3_auto/
  6. model_name=model_bkb8_v3
  7. today="$(date +%Y%m%d)"
  8. today_early_1="$(date -d '1 days ago' +%Y%m%d)"
  9. LAST_MODEL_HOME=/root/zhaohp/model_online
  10. MODEL_PATH=/root/zhaohp/recommend-emr-dataprocess/model
  11. PREDICT_PATH=/root/zhaohp/recommend-emr-dataprocess/predict
  12. HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
  13. FM_HOME=/root/sunmingze/alphaFM
  14. OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/zhangbo/
  15. max_hour=17
  16. max_minute=00
  17. export SPARK_HOME=/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8
  18. export PATH=$SPARK_HOME/bin:$PATH
  19. export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf
  20. export JAVA_HOME=/usr/lib/jvm/java-1.8.0
  21. start_time=$(date "+%Y-%m-%d %H:%M:%S")
  22. elapsed=0
  23. LOG_PREFIX=广告模型自动更新任务
  24. # 1 判断依赖的数据表是否生产完成
  25. source /root/anaconda3/bin/activate py37
  26. while true; do
  27. python_return_code=$(python ad/ad_utils.py --excute_program check_ad_origin_hive --partition ${today} --hh 10)
  28. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  29. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  30. if [ "$python_return_code" -eq 0 ]; then
  31. break
  32. fi
  33. echo "Python程序返回非0值,等待五分钟后再次调用。"
  34. sleep 300
  35. current_hour=$(date +%H)
  36. current_minute=$(date +%M)
  37. if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
  38. msg="大数据数据生产校验失败 \n\t分区: ${today}10"
  39. echo -e "$LOG_PREFIX -- 大数据数据生产校验 -- ${msg}"
  40. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  41. exit 1
  42. fi
  43. done
  44. echo "$LOG_PREFIX -- 大数据数据生产校验 -- 大数据数据生产校验通过: 耗时 $elapsed"
  45. # 2 原始特征生成
  46. step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  47. /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  48. --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_31_originData_20240620 \
  49. --master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
  50. ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  51. tablePart:64 repartition:16 \
  52. beginStr:${today_early_1}00 endStr:${today}10 \
  53. savePath:${originDataSavePath} \
  54. table:alg_recsys_ad_sample_all filterHours:00,01,02,03,04,05,06,07 \
  55. idDefaultValue:0.01
  56. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  57. step_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
  58. if [ $? -ne 0 ]; then
  59. msg="Spark原始样本生产任务执行失败"
  60. echo "$LOG_PREFIX -- 原始样本生产 -- $msg: 耗时 $step_elapsed"
  61. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  62. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  63. exit 1
  64. fi
  65. echo "$LOG_PREFIX -- 原始样本生产 -- Spark原始样本生产任务执行成功: 耗时 $step_elapsed"
  66. # 3 特征分桶
  67. step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  68. /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  69. --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_33_bucketData_20240622 \
  70. --master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
  71. ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  72. beginStr:${today_early_1} endStr:${today} repartition:100 \
  73. filterNames:adid_,targeting_conversion_ \
  74. readPath:${originDataSavePath} \
  75. savePath:${bucketFeatureSavePath}
  76. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  77. step_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
  78. if [ $? -ne 0 ]; then
  79. msg="Spark特征分桶处理任务执行失败"
  80. echo "$LOG_PREFIX -- 特征分桶处理任务 -- $msg: 耗时 $step_elapsed"
  81. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  82. /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg}
  83. exit 1
  84. fi
  85. echo "$LOG_PREFIX -- 特征分桶处理任务 -- spark特征分桶处理执行成功: 耗时 $step_elapsed"
  86. # 4 模型训练
  87. step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  88. $HADOOP fs -text ${bucketFeatureSavePath}/${today_early_1}/* | ${FM_HOME}/bin/fm_train -m ${MODEL_PATH}/${model_name}_${today_early_1}.txt -dim 1,1,8 -im ${LAST_MODEL_HOME}/model_online.txt -core 8
  89. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  90. step_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
  91. if [ $? -ne 0 ]; then
  92. msg "模型训练失败"
  93. echo "$LOG_PREFIX -- 原始样本生产 -- $msg: 耗时 $step_elapsed"
  94. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  95. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  96. exit 1
  97. fi
  98. echo "$LOG_PREFIX -- 原始样本生产 -- 模型训练完成: 耗时 $step_elapsed"
  99. # 5 对比AUC
  100. step5_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  101. step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  102. # 5.1 计算线上模型的AUC
  103. $HADOOP fs -text ${bucketFeatureSavePath}/${today}/* | ${FM_HOME}/bin/fm_predict -m ${LAST_MODEL_HOME}/model_online.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_online.txt
  104. online_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_online.txt | /root/sunmingze/AUC/AUC`
  105. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  106. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
  107. if [ $? -ne 0 ]; then
  108. msg="线上模型AUC计算失败"
  109. echo "$LOG_PREFIX -- 线上模型AUC计算 -- $msg: 耗时 $step_elapsed"
  110. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  111. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  112. exit 1
  113. fi
  114. echo "$LOG_PREFIX -- 线上模型AUC计算 -- 线上模型AUC计算完成: 耗时 $step_elapsed"
  115. # 5.2 计算新模型的AUC
  116. step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  117. $HADOOP fs -text ${bucketFeatureSavePath}/${today}/* | ${FM_HOME}/bin/fm_predict -m ${MODEL_PATH}/${model_name}_${today_early_1}.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_new.txt
  118. new_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_new.txt | /root/sunmingze/AUC/AUC`
  119. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  120. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
  121. if [ $? -ne 0 ]; then
  122. msg="新模型AUC计算失败"
  123. echo "$LOG_PREFIX -- 新模型AUC计算 -- $msg: 耗时 $step_elapsed"
  124. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  125. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  126. exit 1
  127. fi
  128. echo "$LOG_PREFIX -- 新模型AUC计算 -- 新模型AUC计算完成: 耗时 $step_elapsed"
  129. echo "AUC比对: 线上模型的AUC: ${online_auc}, 新模型的AUC: ${new_auc}"
  130. # 5.3 计算新模型与线上模型的AUC差值的绝对值
  131. auc_diff=$(echo "$online_auc - $new_auc" | bc -l)
  132. auc_diff_abs=$(echo "sqrt(($auc_diff)^2)" | bc -l)
  133. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  134. step5_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step5_start_time")))
  135. # 5.4 如果差值的绝对值小于0.005且新模型的AUC大于0.73, 则更新模型
  136. if (( $(echo "${online_auc} <= ${new_auc}" | bc -l) )); then
  137. msg="新模型优于线上模型 \n\t线上模型AUC: ${online_auc} \n\t新模型AUC: ${new_auc}"
  138. echo -e "$LOG_PREFIX -- AUC对比 -- $msg: 耗时 $step5_elapsed"
  139. elif (( $(echo "$auc_diff_abs < 0.005" | bc -l) )) && (( $(echo "$new_auc >= 0.73" | bc -l) )); then
  140. msg="新模型与线上模型差值小于阈值0.005 \n\t线上模型AUC: ${online_auc} \n\t新模型AUC: ${new_auc} \n\t差值为: $auc_diff_abs"
  141. echo -e "$LOG_PREFIX -- AUC对比 -- $msg: 耗时 $step5_elapsed"
  142. else
  143. msg="新模型与线上模型差值大于等于阈值0.005 \n\t线上模型AUC: ${online_auc} \n\t新模型AUC: ${new_auc} \n\t差值为: $auc_diff_abs"
  144. echo -e "$LOG_PREFIX -- AUC对比 -- $msg: 耗时 $step5_elapsed"
  145. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  146. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  147. exit 1
  148. fi
  149. # 6 模型格式转换
  150. step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  151. change_txt_path=${MODEL_PATH}/${model_name}_${today_early_1}_change.txt
  152. cat ${MODEL_PATH}/${model_name}_${today_early_1}.txt |
  153. awk -F " " '{
  154. if (NR == 1) {
  155. print $1"\t"$2
  156. } else {
  157. split($0, fields, " ");
  158. OFS="\t";
  159. line=""
  160. for (i = 1; i <= 10 && i <= length(fields); i++) {
  161. line = (line ? line "\t" : "") fields[i];
  162. }
  163. print line
  164. }
  165. }' > "$change_txt_path"
  166. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  167. step_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
  168. if [ $? -ne 0 ]; then
  169. msg="新模型文件格式转换失败"
  170. echo -e "$LOG_PREFIX -- AUC对比 -- $msg: 耗时 $step_elapsed"
  171. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  172. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  173. exit 1
  174. fi
  175. echo -e "$LOG_PREFIX -- 模型文件格式转换 -- 转换后的路径为 [$change_txt_path]: 耗时 $step_elapsed"
  176. # 7 模型文件上传OSS
  177. step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  178. online_model_path=${OSS_PATH}/${model_name}.txt
  179. $HADOOP fs -test -e ${online_model_path}
  180. if [ $? -eq 0 ]; then
  181. echo "数据存在, 先删除。"
  182. $HADOOP fs -rm -r -skipTrash ${online_model_path}
  183. else
  184. echo "数据不存在"
  185. fi
  186. $HADOOP fs -put ${MODEL_PATH}/${model_name}_${today_early_1}_change.txt ${online_model_path}
  187. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  188. step_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
  189. if [ $? -ne 0 ]; then
  190. msg="广告模型文件至OSS失败, OSS模型文件路径: $online_model_path"
  191. echo -e "$LOG_PREFIX -- 模型文件推送至OSS -- $msg: 耗时 $step_elapsed"
  192. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  193. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  194. exit 1
  195. fi
  196. echo -e "$LOG_PREFIX -- 模型文件推送至OSS -- 广告模型文件至OSS成功, OSS模型文件路径 $online_model_path: 耗时 $step_elapsed"
  197. # 8 本地保存最新的线上使用的模型,用于下一次的AUC验证
  198. step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  199. cp -f ${LAST_MODEL_HOME}/model_online.txt ${LAST_MODEL_HOME}/model_online_$(date +\%Y\%m\%d).txt
  200. cp -f ${MODEL_PATH}/${model_name}_${today_early_1}.txt ${LAST_MODEL_HOME}/model_online.txt
  201. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  202. step_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
  203. if [ $? -ne 0 ]; then
  204. msg="模型备份失败"
  205. echo -e "$LOG_PREFIX -- 模型备份 -- $msg: 耗时 $step_elapsed"
  206. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  207. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  208. exit 1
  209. fi
  210. echo -e "$LOG_PREFIX -- 模型备份 -- 模型备份完成: 耗时 $step_elapsed"
  211. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  212. msg="广告模型文件更新完成 \n\t \n\t 新模型AUC: $new_auc \n\t 线上模型AUC: $online_auc AUC差值: $auc_diff_abs \n\t 模型上传路径: $online_model_path \n\t"
  213. echo -e "$LOG_PREFIX -- 模型更新完成 -- $msg: 耗时 $step_elapsed"
  214. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  215. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  216. # 32 16 * * * cd /root/zhangbo/recommend-emr-dataprocess && /bin/sh ./ad/01_ad_model_update_everyday.sh > logs/01_update_eventday$(date +\%Y-\%m-\%d_\%H).log 2>&1