123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266 |
- #!/bin/sh
- set -x
- # 0 全局变量/参数
- originDataSavePath=/dw/recommend/model/31_ad_sample_data_v3_auto/
- bucketFeatureSavePath=/dw/recommend/model/33_ad_train_data_v3_auto/
- model_name=model_bkb8_v3
- today="$(date +%Y%m%d)"
- today_early_1="$(date -d '1 days ago' +%Y%m%d)"
- LAST_MODEL_HOME=/root/zhaohp/model_online
- MODEL_PATH=/root/zhaohp/recommend-emr-dataprocess/model
- PREDICT_PATH=/root/zhaohp/recommend-emr-dataprocess/predict
- HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
- FM_HOME=/root/sunmingze/alphaFM
- OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/zhangbo/
- max_hour=17
- max_minute=00
- export SPARK_HOME=/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8
- export PATH=$SPARK_HOME/bin:$PATH
- export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf
- export JAVA_HOME=/usr/lib/jvm/java-1.8.0
- start_time=$(date "+%Y-%m-%d %H:%M:%S")
- elapsed=0
- LOG_PREFIX=广告模型自动更新任务
- # 1 判断依赖的数据表是否生产完成
- source /root/anaconda3/bin/activate py37
- while true; do
- python_return_code=$(python ad/ad_utils.py --excute_program check_ad_origin_hive --partition ${today} --hh 10)
- step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
- elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
- if [ "$python_return_code" -eq 0 ]; then
- break
- fi
- echo "Python程序返回非0值,等待五分钟后再次调用。"
- sleep 300
- current_hour=$(date +%H)
- current_minute=$(date +%M)
- if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
- msg="大数据数据生产校验失败 \n\t分区: ${today}10"
- echo -e "$LOG_PREFIX -- 大数据数据生产校验 -- ${msg}"
- /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
- exit 1
- fi
- done
- echo "$LOG_PREFIX -- 大数据数据生产校验 -- 大数据数据生产校验通过: 耗时 $elapsed"
- # 2 原始特征生成
- step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
- /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
- --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_31_originData_20240620 \
- --master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
- ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
- tablePart:64 repartition:16 \
- beginStr:${today_early_1}00 endStr:${today}10 \
- savePath:${originDataSavePath} \
- table:alg_recsys_ad_sample_all filterHours:00,01,02,03,04,05,06,07 \
- idDefaultValue:0.01
- step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
- step_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
- if [ $? -ne 0 ]; then
- msg="Spark原始样本生产任务执行失败"
- echo "$LOG_PREFIX -- 原始样本生产 -- $msg: 耗时 $step_elapsed"
- elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
- /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
- exit 1
- fi
- echo "$LOG_PREFIX -- 原始样本生产 -- Spark原始样本生产任务执行成功: 耗时 $step_elapsed"
- # 3 特征分桶
- step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
- /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
- --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_33_bucketData_20240622 \
- --master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
- ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
- beginStr:${today_early_1} endStr:${today} repartition:100 \
- filterNames:adid_,targeting_conversion_ \
- readPath:${originDataSavePath} \
- savePath:${bucketFeatureSavePath}
- step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
- step_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
- if [ $? -ne 0 ]; then
- msg="Spark特征分桶处理任务执行失败"
- echo "$LOG_PREFIX -- 特征分桶处理任务 -- $msg: 耗时 $step_elapsed"
- elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
- /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg}
- exit 1
- fi
- echo "$LOG_PREFIX -- 特征分桶处理任务 -- spark特征分桶处理执行成功: 耗时 $step_elapsed"
- # 4 模型训练
- step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
- $HADOOP fs -text ${bucketFeatureSavePath}/${today_early_1}/* | ${FM_HOME}/bin/fm_train -m ${MODEL_PATH}/${model_name}_${today_early_1}.txt -dim 1,1,8 -im ${LAST_MODEL_HOME}/model_online.txt -core 8
- step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
- step_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
- if [ $? -ne 0 ]; then
- msg "模型训练失败"
- echo "$LOG_PREFIX -- 原始样本生产 -- $msg: 耗时 $step_elapsed"
- elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
- /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
- exit 1
- fi
- echo "$LOG_PREFIX -- 原始样本生产 -- 模型训练完成: 耗时 $step_elapsed"
- # 5 对比AUC
- step5_start_time=$(date "+%Y-%m-%d %H:%M:%S")
- step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
- # 5.1 计算线上模型的AUC
- $HADOOP fs -text ${bucketFeatureSavePath}/${today}/* | ${FM_HOME}/bin/fm_predict -m ${LAST_MODEL_HOME}/model_online.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_online.txt
- online_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_online.txt | /root/sunmingze/AUC/AUC`
- step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
- elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
- if [ $? -ne 0 ]; then
- msg="线上模型AUC计算失败"
- echo "$LOG_PREFIX -- 线上模型AUC计算 -- $msg: 耗时 $step_elapsed"
- elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
- /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
- exit 1
- fi
- echo "$LOG_PREFIX -- 线上模型AUC计算 -- 线上模型AUC计算完成: 耗时 $step_elapsed"
- # 5.2 计算新模型的AUC
- step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
- $HADOOP fs -text ${bucketFeatureSavePath}/${today}/* | ${FM_HOME}/bin/fm_predict -m ${MODEL_PATH}/${model_name}_${today_early_1}.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_new.txt
- new_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_new.txt | /root/sunmingze/AUC/AUC`
- step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
- elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
- if [ $? -ne 0 ]; then
- msg="新模型AUC计算失败"
- echo "$LOG_PREFIX -- 新模型AUC计算 -- $msg: 耗时 $step_elapsed"
- elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
- /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
- exit 1
- fi
- echo "$LOG_PREFIX -- 新模型AUC计算 -- 新模型AUC计算完成: 耗时 $step_elapsed"
- echo "AUC比对: 线上模型的AUC: ${online_auc}, 新模型的AUC: ${new_auc}"
- # 5.3 计算新模型与线上模型的AUC差值的绝对值
- auc_diff=$(echo "$online_auc - $new_auc" | bc -l)
- auc_diff_abs=$(echo "sqrt(($auc_diff)^2)" | bc -l)
- step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
- step5_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step5_start_time")))
- # 5.4 如果差值的绝对值小于0.005且新模型的AUC大于0.73, 则更新模型
- if (( $(echo "${online_auc} <= ${new_auc}" | bc -l) )); then
- msg="新模型优于线上模型 \n\t线上模型AUC: ${online_auc} \n\t新模型AUC: ${new_auc}"
- echo -e "$LOG_PREFIX -- AUC对比 -- $msg: 耗时 $step5_elapsed"
- elif (( $(echo "$auc_diff_abs < 0.005" | bc -l) )) && (( $(echo "$new_auc >= 0.73" | bc -l) )); then
- msg="新模型与线上模型差值小于阈值0.005 \n\t线上模型AUC: ${online_auc} \n\t新模型AUC: ${new_auc} \n\t差值为: $auc_diff_abs"
- echo -e "$LOG_PREFIX -- AUC对比 -- $msg: 耗时 $step5_elapsed"
- else
- msg="新模型与线上模型差值大于等于阈值0.005 \n\t线上模型AUC: ${online_auc} \n\t新模型AUC: ${new_auc} \n\t差值为: $auc_diff_abs"
- echo -e "$LOG_PREFIX -- AUC对比 -- $msg: 耗时 $step5_elapsed"
- elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
- /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
- exit 1
- fi
- # 6 模型格式转换
- step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
- change_txt_path=${MODEL_PATH}/${model_name}_${today_early_1}_change.txt
- cat ${MODEL_PATH}/${model_name}_${today_early_1}.txt |
- awk -F " " '{
- if (NR == 1) {
- print $1"\t"$2
- } else {
- split($0, fields, " ");
- OFS="\t";
- line=""
- for (i = 1; i <= 10 && i <= length(fields); i++) {
- line = (line ? line "\t" : "") fields[i];
- }
- print line
- }
- }' > "$change_txt_path"
- step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
- step_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
- if [ $? -ne 0 ]; then
- msg="新模型文件格式转换失败"
- echo -e "$LOG_PREFIX -- AUC对比 -- $msg: 耗时 $step_elapsed"
- elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
- /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
- exit 1
- fi
- echo -e "$LOG_PREFIX -- 模型文件格式转换 -- 转换后的路径为 [$change_txt_path]: 耗时 $step_elapsed"
- # 7 模型文件上传OSS
- step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
- online_model_path=${OSS_PATH}/${model_name}.txt
- $HADOOP fs -test -e ${online_model_path}
- if [ $? -eq 0 ]; then
- echo "数据存在, 先删除。"
- $HADOOP fs -rm -r -skipTrash ${online_model_path}
- else
- echo "数据不存在"
- fi
- $HADOOP fs -put ${MODEL_PATH}/${model_name}_${today_early_1}_change.txt ${online_model_path}
- step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
- step_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
- if [ $? -ne 0 ]; then
- msg="广告模型文件至OSS失败, OSS模型文件路径: $online_model_path"
- echo -e "$LOG_PREFIX -- 模型文件推送至OSS -- $msg: 耗时 $step_elapsed"
- elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
- /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
- exit 1
- fi
- echo -e "$LOG_PREFIX -- 模型文件推送至OSS -- 广告模型文件至OSS成功, OSS模型文件路径 $online_model_path: 耗时 $step_elapsed"
- # 8 本地保存最新的线上使用的模型,用于下一次的AUC验证
- step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
- cp -f ${LAST_MODEL_HOME}/model_online.txt ${LAST_MODEL_HOME}/model_online_$(date +\%Y\%m\%d).txt
- cp -f ${MODEL_PATH}/${model_name}_${today_early_1}.txt ${LAST_MODEL_HOME}/model_online.txt
- step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
- step_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
- if [ $? -ne 0 ]; then
- msg="模型备份失败"
- echo -e "$LOG_PREFIX -- 模型备份 -- $msg: 耗时 $step_elapsed"
- elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
- /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
- exit 1
- fi
- echo -e "$LOG_PREFIX -- 模型备份 -- 模型备份完成: 耗时 $step_elapsed"
- step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
- msg="广告模型文件更新完成 \n\t \n\t 新模型AUC: $new_auc \n\t 线上模型AUC: $online_auc AUC差值: $auc_diff_abs \n\t 模型上传路径: $online_model_path \n\t"
- echo -e "$LOG_PREFIX -- 模型更新完成 -- $msg: 耗时 $step_elapsed"
- elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
- /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
- # 32 16 * * * cd /root/zhangbo/recommend-emr-dataprocess && /bin/sh ./ad/01_ad_model_update_everyday.sh > logs/01_update_eventday$(date +\%Y-\%m-\%d_\%H).log 2>&1
|