model_predict_analyse.py 2.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778
  1. import argparse
  2. import gzip
  3. import sys
  4. import pandas as pd
  5. from hdfs import InsecureClient
  6. client = InsecureClient("http://master-1-1.c-7f31a3eea195cb73.cn-hangzhou.emr.aliyuncs.com:9870", user="spark")
  7. def read_predict(hdfs_path: str) -> list:
  8. result = []
  9. for file in client.list(hdfs_path):
  10. with client.read(hdfs_path + file) as reader:
  11. with gzip.GzipFile(fileobj=reader, mode="rb") as gz_file:
  12. for line in gz_file.read().decode("utf-8").split("\n"):
  13. split = line.split("\t")
  14. if len(split) != 4:
  15. continue
  16. cid = split[3].split("_")[0]
  17. label = split[0]
  18. score = float(split[2].replace("[", "").replace("]", "").split(",")[1])
  19. result.append({
  20. "cid": cid,
  21. "label": label,
  22. "score": score
  23. })
  24. return result
  25. def _main(model1_predict_path: str, model2_predict_path: str):
  26. if not model1_predict_path.endswith("/"):
  27. model1_predict_path += "/"
  28. if not model2_predict_path.endswith("/"):
  29. model2_predict_path += "/"
  30. # # 设置 pandas 显示选项
  31. # pd.set_option('display.max_rows', None) # 显示所有行
  32. # pd.set_option('display.max_columns', None) # 显示所有列
  33. model1_result = read_predict(model1_predict_path)
  34. model2_result = read_predict(model2_predict_path)
  35. m1 = pd.DataFrame(model1_result)
  36. g1 = m1.groupby("cid").agg(count=('cid', 'size'), average_value=('score', lambda x: round(x.mean(), 6)))
  37. # 获取出现次数最多的十个 cid
  38. most_common_cid1 = g1.nlargest(10, 'count')
  39. m2 = pd.DataFrame(model2_result)
  40. g2 = m2.groupby("cid").agg(count=('cid', 'size'), average_value=('score', lambda x: round(x.mean(), 6)))
  41. # 获取出现次数最多的十个 cid
  42. most_common_cid2 = g2.nlargest(10, 'count')
  43. # 合并两个 DataFrame,按 'cid' 匹配
  44. merged = pd.merge(most_common_cid1, most_common_cid2, on='cid', suffixes=('_m1', '_m2'))
  45. # 计算 'average_value' 的差值绝对值,并保留六位小数
  46. merged['score_diff'] = (merged['average_value_m1'] - merged['average_value_m2']).abs().round(6)
  47. # 计算差值的平均值,并保留六位小数
  48. mean_abs_diff = round(merged['score_diff'].mean(), 6)
  49. print(mean_abs_diff)
  50. if __name__ == '__main__':
  51. parser = argparse.ArgumentParser(description="model_predict_analyse.py")
  52. parser.add_argument("-p", "--predict_path_list", nargs='*',
  53. help="模型评估结果保存路径,第一个为老模型评估结果,第二个为新模型评估结果")
  54. args = parser.parse_args()
  55. predict_path_list = args.predict_path_list
  56. # 判断参数是否正常
  57. if len(predict_path_list) != 2:
  58. sys.exit(1)
  59. _main(predict_path_list[0], predict_path_list[1])