01_ad_model_update_everyday.sh 4.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133
  1. #!/bin/sh
  2. set -ex
  3. #
  4. ## 0 全局变量/参数
  5. #originDataSavePath=/dw/recommend/model/31_ad_sample_data_auto/
  6. #bucketFeatureSavePath=/dw/recommend/model/33_ad_train_data_nosparse_auto/
  7. #model_name=model_lr0
  8. #today="$(date +%Y%m%d)"
  9. #today_early_1="$(date -d '1 days ago' +%Y%m%d)"
  10. #beginTime=08
  11. #endTime=23
  12. #beginStr=${today_early_1}${beginTime}
  13. #endStr=${today_early_1}${endTime}
  14. #
  15. #MODEL_PATH=/root/zhaohp/recommend-emr-dataprocess/model
  16. #HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
  17. #FM_HOME=/root/sunmingze/alphaFM
  18. #OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/ad_model/
  19. #
  20. #
  21. ## 1 判断依赖的数据表是否生产完成
  22. #source /root/anaconda3/bin/activate py37
  23. #max_hour=15
  24. #max_minute=00
  25. #while true; do
  26. # python_return_code=$(python ad/ad_utils.py --excute_program check_ad_origin_hive --partition ${today_early_1} --hh ${endTime})
  27. # if [ $python_return_code -eq 0 ]; then
  28. # echo "Python程序返回0,退出循环。"
  29. # break
  30. # fi
  31. # echo "Python程序返回非0值,等待五分钟后再次调用。"
  32. # sleep 300
  33. # current_hour=$(date +%H)
  34. # current_minute=$(date +%M)
  35. # if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
  36. # echo "最长等待时间已到,失败:${current_hour}-${current_minute}"
  37. # msg="广告特征数据校验失败,大数据分区没有数据: ${today_early_1}${endTime}"
  38. # /root/anaconda3/bin/python ad/utils_monitor.py ${msg}
  39. # exit 1
  40. # fi
  41. #done
  42. #
  43. #
  44. ## 2 原始特征生成
  45. #/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  46. #--class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_31_originData_20240620 \
  47. #--master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
  48. #./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  49. #tablePart:64 repartition:32 \
  50. #beginStr:${beginStr} endStr:${endStr} \
  51. #savePath:${originDataSavePath} \
  52. #table:alg_recsys_ad_sample_all_new
  53. #if [ $? -ne 0 ]; then
  54. # echo "Spark原始样本生产任务执行失败"
  55. # msg="广告特征数据生成失败,Spark原始样本生产任务执行失败"
  56. # /root/anaconda3/bin/python ad/utils_monitor.py ${msg}
  57. # exit 1
  58. #else
  59. # echo "spark原始样本生产执行成功"
  60. #fi
  61. #
  62. #
  63. ## 3 特征分桶
  64. #/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  65. #--class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_33_bucketData_20240622 \
  66. #--master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
  67. #./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  68. #beginStr:${today_early_1} endStr:${today_early_1} repartition:400 \
  69. #filterNames:XXXXX \
  70. #bucketFileName:20240620_ad_bucket_249_fix.txt \
  71. #readPath:${originDataSavePath} \
  72. #savePath:${bucketFeatureSavePath}
  73. #if [ $? -ne 0 ]; then
  74. # echo "Spark特征分桶处理任务执行失败"
  75. # msg="广告特征分桶失败,Spark特征分桶处理任务执行失败"
  76. # /root/anaconda3/bin/python ad/utils_monitor.py ${msg}
  77. # exit 1
  78. #else
  79. # echo "spark特征分桶处理执行成功"
  80. #fi
  81. #
  82. #
  83. ## 4 模型训练
  84. #$HADOOP fs -text ${bucketFeatureSavePath}/${today_early_1}/* | /root/sunmingze/alphaFM/bin/fm_train -m model/${model_name}_${today_early_1}.txt -dim 1,1,0 -core 8
  85. #if [ $? -ne 0 ]; then
  86. # echo "模型训练失败"
  87. # /root/anaconda3/bin/python ad/utils_monitor.py "广告模型训练失败"
  88. # exit 1
  89. #fi
  90. #
  91. #
  92. ## 5 对比AUC
  93. ## 5.1 生成今天08-10的原始特征数据
  94. #
  95. #
  96. #
  97. #
  98. #
  99. #
  100. #
  101. #
  102. #
  103. #
  104. #
  105. #
  106. #
  107. #
  108. ## 6 模型格式转换
  109. #cat ${MODEL_PATH}/${model_name}_${today_early_1}.txt \
  110. #| sed '1d' | awk -F " " '{if($2!="0") print $1"\t"$2}' \
  111. #> ${MODEL_PATH}/${model_name}_${today_early_1}_change.txt
  112. # 7 模型文件上传OSS
  113. online_model_path=${OSS_PATH}/${model_name}.txt
  114. $HADOOP fs -test -e ${online_model_path}
  115. if [ $? -eq 0 ]; then
  116. echo "数据存在, 先删除。"
  117. $HADOOP fs -rm -r ${online_model_path}
  118. else
  119. echo "数据不存在"
  120. fi
  121. $HADOOP fs -put ${MODEL_PATH}/${model_name}_${today_early_1}_change.txt ${online_model_path}
  122. if [ $? -eq 0 ]; then
  123. echo "推荐模型文件至OSS成功"
  124. else
  125. echo "推荐模型文件至OSS失败"
  126. /root/anaconda3/bin/python ad/utils_monitor.py "推荐模型文件至OSS失败"
  127. fi
  128. # 7.3 本地保存最新的线上使用的模型,用于下一次的AUC验证
  129. cp ${MODEL_PATH}/${model_name}_${today_early_1}.txt ${MODEL_PATH}/model_online.txt