123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172 |
- import argparse
- import gzip
- import sys
- import ad_monitor_util
- import pandas as pd
- from hdfs import InsecureClient
- client = InsecureClient("http://master-1-1.c-7f31a3eea195cb73.cn-hangzhou.emr.aliyuncs.com:9870", user="spark")
- def read_predict(hdfs_path: str) -> list:
- result = []
- for file in client.list(hdfs_path):
- with client.read(hdfs_path + file) as reader:
- with gzip.GzipFile(fileobj=reader, mode="rb") as gz_file:
- for line in gz_file.read().decode("utf-8").split("\n"):
- split = line.split("\t")
- if len(split) != 4:
- continue
- cid = split[3].split("_")[0]
- label = split[0]
- score = float(split[2].replace("[", "").replace("]", "").split(",")[1])
- result.append({
- "cid": cid,
- "label": label,
- "score": score
- })
- return result
- def _main(model1_predict_path: str, model2_predict_path: str):
- model1_result = read_predict(model1_predict_path)
- model2_result = read_predict(model2_predict_path)
- m1 = pd.DataFrame(model1_result)
- g1 = m1.groupby("cid").agg(count=('cid', 'size'), average_value=('score', lambda x: round(x.mean(), 6)))
- # 获取出现次数最多的十个 cid
- most_common_cid1 = g1.nlargest(10, 'count')
- m2 = pd.DataFrame(model2_result)
- g2 = m2.groupby("cid").agg(count=('cid', 'size'), average_value=('score', lambda x: round(x.mean(), 6)))
- # 获取出现次数最多的十个 cid
- most_common_cid2 = g2.nlargest(10, 'count')
- # 合并两个 DataFrame,按 'cid' 匹配
- merged = pd.merge(most_common_cid1, most_common_cid2, on='cid', suffixes=('_m1', '_m2'))
- # 计算 'average_value' 的差值绝对值,并保留六位小数
- merged['score_diff'] = (merged['average_value_m1'] - merged['average_value_m2']).abs().round(6)
- # 计算差值的平均值,并保留六位小数
- mean_abs_diff = round(merged['score_diff'].mean(), 6)
- print(mean_abs_diff)
-
- if __name__ == '__main__':
- parser = argparse.ArgumentParser(description="model_predict_analyse.py")
- parser.add_argument("-p", "--predict_path_list", nargs='*',
- help="模型评估结果保存路径,第一个为老模型评估结果,第二个为新模型评估结果")
- args = parser.parse_args()
- predict_path_list = args.predict_path_list
- # 判断参数是否正常
- if len(predict_path_list) != 2:
- sys.exit(1)
- _main(predict_path_list[0], predict_path_list[1])
|