01_ad_model_update.sh 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231
  1. #!/bin/sh
  2. set -x
  3. source /root/anaconda3/bin/activate py37
  4. sh_path=$(dirname $0)
  5. source ${sh_path}/00_common.sh
  6. export SPARK_HOME=/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8
  7. export PATH=$SPARK_HOME/bin:$PATH
  8. export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf
  9. export JAVA_HOME=/usr/lib/jvm/java-1.8.0
  10. # 全局常量
  11. HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
  12. TRAIN_PATH=/dw/recommend/model/31_ad_sample_data_v4/
  13. BUCKET_FEATURE_PATH=/dw/recommend/model/33_ad_train_data_v4/
  14. MODEL_PATH=/dw/recommend/model/35_ad_model_test/
  15. PREDICT_RESULT_SAVE_PATH=/dw/recommend/model/34_ad_predict_data_test/
  16. TABLE=alg_recsys_ad_sample_all
  17. # 特征文件名
  18. feature_file=20240703_ad_feature_name.txt
  19. # 模型OSS保存路径,测试时修改为其他路径,避免影响线上
  20. MODEL_OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/model/
  21. # 线上模型名,测试时修改为其他模型名,避免影响线上
  22. model_name=model_xgb_351_1000_v2_test
  23. today_early_1="$(date -d '1 days ago' +%Y%m%d)"
  24. # 训练用的数据路径
  25. train_data_path=""
  26. # 评估用的数据路径
  27. predict_date_path=""
  28. #评估结果保存路径
  29. new_model_predict_result_path=""
  30. # 模型保存路径
  31. model_save_path=""
  32. # 模型本地临时保存路径
  33. model_local_path=/root/zhaohp/XGB
  34. # 任务开始时间
  35. start_time=$(date +%s)
  36. # 线上模型在HDFS中的路径
  37. online_model_path=`cat /root/zhaohp/XGB/online_model_path.txt`
  38. # 校验命令的退出码
  39. check_run_status() {
  40. local status=$1
  41. local step_start_time=$2
  42. local step_name=$3
  43. local step_end_time=$(date +%s)
  44. local step_elapsed=$(($step_end_time - $step_start_time))
  45. if [ $status -ne 0 ]; then
  46. echo "$LOG_PREFIX -- ${step_name}失败: 耗时 $step_elapsed"
  47. local elapsed=$(($step_end_time - $start_time))
  48. # /root/anaconda3/bin/python ${sh_path}/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  49. exit 1
  50. else
  51. echo "$LOG_PREFIX -- ${step_name}成功: 耗时 $step_elapsed"
  52. fi
  53. }
  54. init() {
  55. declare -a date_keys=()
  56. local count=1
  57. local current_data="$(date -d '2 days ago' +%Y%m%d)"
  58. # 循环获取前 n 天的非节日日期
  59. while [[ $count -lt 8 ]]; do
  60. date_key=$(date -d "$current_data" +%Y%m%d)
  61. # 判断是否是节日,并拼接训练数据路径
  62. if [ $(is_not_holidays $date_key) -eq 1 ]; then
  63. # 将 date_key 放入数组
  64. date_keys+=("$date_key")
  65. if [[ -z ${train_data_path} ]]; then
  66. train_data_path="${BUCKET_FEATURE_PATH}/${date_key}"
  67. else
  68. train_data_path="${BUCKET_FEATURE_PATH}/${date_key},${train_data_path}"
  69. fi
  70. count=$((count + 1))
  71. else
  72. echo "日期: ${date_key}是节日,跳过"
  73. fi
  74. current_data=$(date -d "$current_data -1 day" +%Y%m%d)
  75. done
  76. last_index=$((${#date_keys[@]} - 1))
  77. train_first_day=${date_keys[$last_index]}
  78. train_last_day=${date_keys[0]}
  79. model_save_path=${MODEL_PATH}/${model_name}_${train_first_day: -4}_${train_last_day: -4}
  80. predict_date_path=${BUCKET_FEATURE_PATH}/${today_early_1}
  81. new_model_predict_result_path=${PREDICT_RESULT_SAVE_PATH}/${today_early_1}_351_1000_${train_first_day: -4}_${train_last_day: -4}
  82. online_model_predict_result_path=${PREDICT_RESULT_SAVE_PATH}/${today_early_1}_351_1000_${online_model_path: -9}
  83. echo "init param train_data_path: ${train_data_path}"
  84. echo "init param predict_date_path: ${predict_date_path}"
  85. echo "init param new_model_predict_result_path: ${new_model_predict_result_path}"
  86. echo "init param online_model_predict_result_path: ${online_model_predict_result_path}"
  87. echo "init param model_save_path: ${model_save_path}"
  88. echo "init param online_model_path: ${online_model_path}"
  89. echo "init param feature_file: ${feature_file}"
  90. echo "init param model_name: ${model_name}"
  91. echo "init param model_local_path: ${model_local_path}"
  92. echo "init param model_oss_path: ${MODEL_OSS_PATH}"
  93. }
  94. # 校验大数据任务是否执行完成
  95. check_ad_hive() {
  96. local step_start_time=$(date +%s)
  97. local max_hour=05
  98. local max_minute=30
  99. local elapsed=0
  100. while true; do
  101. local python_return_code=$(python ${sh_path}/ad_utils.py --excute_program check_ad_origin_hive --partition ${today_early_1} --hh 23)
  102. elapsed=$(($(date +%s) - $step_start_time))
  103. if [ "$python_return_code" -eq 0 ]; then
  104. break
  105. fi
  106. echo "Python程序返回非0值,等待五分钟后再次调用。"
  107. sleep 300
  108. local current_hour=$(date +%H)
  109. local current_minute=$(date +%M)
  110. if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
  111. local msg="大数据数据生产校验失败, 分区: ${today_early_1}"
  112. echo -e "$LOG_PREFIX -- 大数据数据生产校验 -- ${msg}: 耗时 $elapsed"
  113. /root/anaconda3/bin/python ${sh_path}/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  114. exit 1
  115. fi
  116. done
  117. echo "$LOG_PREFIX -- 大数据数据生产校验 -- 大数据数据生产校验通过: 耗时 $elapsed"
  118. }
  119. xgb_train() {
  120. local step_start_time=$(date +%s)
  121. /opt/apps/SPARK3/spark-3.3.1-hadoop3.2-1.0.5/bin/spark-class org.apache.spark.deploy.SparkSubmit \
  122. --class com.tzld.piaoquan.recommend.model.train_01_xgb_ad_20240808 \
  123. --master yarn --driver-memory 6G --executor-memory 9G --executor-cores 1 --num-executors 31 \
  124. --conf spark.yarn.executor.memoryoverhead=1000 \
  125. --conf spark.shuffle.service.enabled=true \
  126. --conf spark.shuffle.service.port=7337 \
  127. --conf spark.shuffle.consolidateFiles=true \
  128. --conf spark.shuffle.manager=sort \
  129. --conf spark.storage.memoryFraction=0.4 \
  130. --conf spark.shuffle.memoryFraction=0.5 \
  131. --conf spark.default.parallelism=200 \
  132. /root/zhangbo/recommend-model/recommend-model-produce/target/recommend-model-produce-jar-with-dependencies.jar \
  133. featureFile:20240703_ad_feature_name.txt \
  134. trainPath:${train_data_path} \
  135. testPath:${predict_date_path} \
  136. savePath:${new_model_predict_result_path} \
  137. modelPath:${model_save_path} \
  138. eta:0.01 gamma:0.0 max_depth:5 num_round:1000 num_worker:30 repartition:20
  139. local return_code=$?
  140. check_run_status $return_code $step_start_time "XGB模型训练任务"
  141. }
  142. model_predict() {
  143. # 线上模型评估最新的数据
  144. # local step_start_time=$(date +%s)
  145. # /opt/apps/SPARK3/spark-3.3.1-hadoop3.2-1.0.5/bin/spark-class org.apache.spark.deploy.SparkSubmit \
  146. # --class com.tzld.piaoquan.recommend.model.pred_01_xgb_ad_hdfsfile_20240813 \
  147. # --master yarn --driver-memory 1G --executor-memory 1G --executor-cores 1 --num-executors 30 \
  148. # --conf spark.yarn.executor.memoryoverhead=1024 \
  149. # --conf spark.shuffle.service.enabled=true \
  150. # --conf spark.shuffle.service.port=7337 \
  151. # --conf spark.shuffle.consolidateFiles=true \
  152. # --conf spark.shuffle.manager=sort \
  153. # --conf spark.storage.memoryFraction=0.4 \
  154. # --conf spark.shuffle.memoryFraction=0.5 \
  155. # --conf spark.default.parallelism=200 \
  156. # /root/zhangbo/recommend-model/recommend-model-produce/target/recommend-model-produce-jar-with-dependencies.jar \
  157. # featureFile:20240703_ad_feature_name.txt \
  158. # testPath:${predict_date_path} \
  159. # savePath:${online_model_predict_result_path} \
  160. # modelPath:${online_model_path}
  161. # local return_code=$?
  162. # check_run_status $return_code $step_start_time "线上模型评估${predict_date_path: -8}的数据"
  163. # local mean_abs_diff=$(python ${sh_path}/model_predict_analyse.py -p ${online_model_predict_result_path} ${new_model_predict_result_path})
  164. local p1="/dw/recommend/model/34_ad_predict_data/20241007_351_0927_1003_1000/"
  165. local p2="/dw/recommend/model/34_ad_predict_data/20241007_351_0930_1006_1000/"
  166. local mean_abs_diff=$(python ${sh_path}/model_predict_analyse.py -p ${p1} ${p2})
  167. }
  168. model_upload_oss() {
  169. cd ${model_local_path}
  170. $hadoop fs -get ${model_save_path} ./${model_name}
  171. if [ ! -d ./${model_name} ]; then
  172. echo "从HDFS下载模型失败"
  173. check_run_status 1 $step_start_time "XGB模型训练任务"
  174. exit 1
  175. fi
  176. tar -czvf ${model_name}.tar.gz -C ${model_name} .
  177. rm -rf .${model_name}.tar.gz.crc
  178. $hadoop fs -rm -r -skipTrash ${MODEL_OSS_PATH}/${model_name}.tar.gz
  179. $hadoop fs -put ${model_name}.tar.gz ${MODEL_OSS_PATH}
  180. check_run_status $return_code $step_start_time "模型上传OSS"
  181. }
  182. # 主方法
  183. main() {
  184. init
  185. # check_ad_hive
  186. # xgb_train
  187. model_predict
  188. # model_upload_oss
  189. }
  190. main