01_ad_model_update_everyday.sh 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156
  1. #!/bin/sh
  2. set -x
  3. # 0 全局变量/参数
  4. originDataSavePath=/dw/recommend/model/31_ad_sample_data_v3_auto/
  5. bucketFeatureSavePath=/dw/recommend/model/33_ad_train_data_v3_auto/
  6. model_name=model_bkb8_v3
  7. today="$(date +%Y%m%d)"
  8. today_early_1="$(date -d '1 days ago' +%Y%m%d)"
  9. MODEL_PATH=/root/zhaohp/recommend-emr-dataprocess/model
  10. PREDICT_PATH=/root/zhaohp/recommend-emr-dataprocess/predict
  11. HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
  12. FM_HOME=/root/sunmingze/alphaFM
  13. OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/zhangbo/
  14. max_hour=17
  15. max_minute=00
  16. export SPARK_HOME=/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8
  17. export PATH=$SPARK_HOME/bin:$PATH
  18. export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf
  19. export JAVA_HOME=/usr/lib/jvm/java-1.8.0
  20. # 1 判断依赖的数据表是否生产完成
  21. source /root/anaconda3/bin/activate py37
  22. while true; do
  23. python_return_code=$(python ad/ad_utils.py --excute_program check_ad_origin_hive --partition ${today} --hh 10)
  24. if [ $python_return_code -eq 0 ]; then
  25. echo "Python程序返回0,退出循环。"
  26. break
  27. fi
  28. echo "Python程序返回非0值,等待五分钟后再次调用。"
  29. sleep 300
  30. current_hour=$(date +%H)
  31. current_minute=$(date +%M)
  32. if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
  33. echo "最长等待时间已到,失败:${current_hour}-${current_minute}"
  34. msg="广告特征数据校验失败,大数据分区没有数据: ${today}10"
  35. /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg}
  36. exit 1
  37. fi
  38. done
  39. # 2 原始特征生成
  40. /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  41. --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_31_originData_20240620 \
  42. --master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
  43. ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  44. tablePart:64 repartition:16 \
  45. beginStr:${today_early_1}00 endStr:${today}10 \
  46. savePath:${originDataSavePath} \
  47. table:alg_recsys_ad_sample_all filterHours:00,01,02,03,04,05,06,07 \
  48. idDefaultValue:0.01
  49. if [ $? -ne 0 ]; then
  50. echo "Spark原始样本生产任务执行失败"
  51. msg="广告特征数据生成失败,Spark原始样本生产任务执行失败"
  52. /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg}
  53. exit 1
  54. else
  55. echo "spark原始样本生产执行成功"
  56. fi
  57. # 3 特征分桶
  58. /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  59. --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_33_bucketData_20240622 \
  60. --master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
  61. ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  62. beginStr:${today_early_1} endStr:${today} repartition:100 \
  63. filterNames:adid_,targeting_conversion_ \
  64. readPath:${originDataSavePath} \
  65. savePath:${bucketFeatureSavePath}
  66. if [ $? -ne 0 ]; then
  67. echo "Spark特征分桶处理任务执行失败"
  68. msg="广告特征分桶失败,Spark特征分桶处理任务执行失败"
  69. /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg}
  70. exit 1
  71. else
  72. echo "spark特征分桶处理执行成功"
  73. fi
  74. # 4 模型训练
  75. $HADOOP fs -text ${bucketFeatureSavePath}/${today_early_1}/* | ${FM_HOME}/fm_train -m ${MODEL_PATH}/${model_name}_${today_early_1}.txt -dim 1,1,8 -im ${MODEL_PATH}/model_online.txt -core 8
  76. if [ $? -ne 0 ]; then
  77. echo "模型训练失败"
  78. /root/anaconda3/bin/python ad/ad_monitor_util.py "广告模型训练失败"
  79. exit 1
  80. fi
  81. # 5 对比AUC
  82. # 5.1 校验今天10分区的数据是否生产完成
  83. online_model=${MODEL_PATH}/model_online.txt
  84. $HADOOP fs -text ${bucketFeatureSavePath}/${today}/* | /root/sunmingze/alphaFM/bin/fm_predict -m ${MODEL_PATH}/${online_model} -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_online.txt
  85. $HADOOP fs -text ${bucketFeatureSavePath}/${today}/* | /root/sunmingze/alphaFM/bin/fm_predict -m ${MODEL_PATH}/${model_name}_${today_early_1}.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_new.txt
  86. # shellcheck disable=SC2006
  87. online_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_online.txt | /root/sunmingze/AUC/AUC`
  88. new_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_new.txt | /root/sunmingze/AUC/AUC`
  89. if [ "$online_auc" \< "$new_auc" ]; then
  90. echo "新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  91. /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  92. else
  93. echo "新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  94. /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  95. exit 1
  96. fi
  97. # 6 模型格式转换
  98. cat cat ${MODEL_PATH}/${model_name}_${today_early_1}.txt |
  99. awk -F " " '{
  100. if (NR == 1) {
  101. print $1"\t"$2
  102. } else {
  103. split($0, fields, " ");
  104. OFS="\t";
  105. line=""
  106. for (i = 1; i <= 10 && i <= length(fields); i++) {
  107. line = (line ? line "\t" : "") fields[i];
  108. }
  109. print line
  110. }
  111. }' > ${MODEL_PATH}/${model_name}_${today_early_1}_change.txt
  112. #cat ${MODEL_PATH}/${model_name}_${today_early_1}.txt \
  113. #| sed '1d' | awk -F " " '{if($2!="0") print $1"\t"$2}' \
  114. #> ${MODEL_PATH}/${model_name}_${today_early_1}_change.txt
  115. # 7 模型文件上传OSS
  116. #online_model_path=${OSS_PATH}/${model_name}.txt
  117. #$HADOOP fs -test -e ${online_model_path}
  118. #if [ $? -eq 0 ]; then
  119. # echo "数据存在, 先删除。"
  120. # $HADOOP fs -rm -r ${online_model_path}
  121. #else
  122. # echo "数据不存在"
  123. #fi
  124. #
  125. #$HADOOP fs -put ${MODEL_PATH}/${model_name}_${today_early_1}_change.txt ${online_model_path}
  126. #if [ $? -eq 0 ]; then
  127. # echo "推荐模型文件至OSS成功"
  128. #else
  129. # echo "推荐模型文件至OSS失败"
  130. # /root/anaconda3/bin/python ad/ad_monitor_util.py "推荐模型文件至OSS失败"
  131. # exit 1
  132. #fi
  133. # 7.3 本地保存最新的线上使用的模型,用于下一次的AUC验证
  134. cp ${MODEL_PATH}/${model_name}_${today_early_1}.txt ${MODEL_PATH}/model_online.txt
  135. # 32 16 * * * cd /root/zhangbo/recommend-emr-dataprocess && /bin/sh ./ad/01_ad_model_update_everyday.sh > logs/01_update_eventday$(date +\%Y-\%m-\%d_\%H).log 2>&1