handle_rov.sh 6.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145
  1. #!/bin/sh
  2. set -ex
  3. # nohup sh handle_rov.sh > "$(date +%Y%m%d_%H%M%S)_handle_rov.log" 2>&1 &
  4. # 原始数据table name
  5. table='alg_recsys_sample_all'
  6. today="$(date +%Y%m%d)"
  7. today_early_3="$(date -d '3 days ago' +%Y%m%d)"
  8. #table='alg_recsys_sample_all_test'
  9. # 处理分区配置 推荐数据间隔一天生产,所以5日0点使用3日0-23点数据生产new模型数据
  10. begin_early_2_Str="$(date -d '2 days ago' +%Y%m%d)"
  11. end_early_2_Str="$(date -d '2 days ago' +%Y%m%d)"
  12. beginHhStr=00
  13. endHhStr=23
  14. # 各节点产出hdfs文件绝对路径
  15. originDataPath=/dw/recommend/model/13_sample_data/
  16. valueDataPath=/dw/recommend/model/14_feature_data/
  17. bucketDataPath=/dw/recommend/model/16_train_data/
  18. MODEL_PATH=/root/joe/recommend-emr-dataprocess/rov/model
  19. PREDICT_PATH=/root/zhaohp/recommend-emr-dataprocess/predict
  20. LAST_MODEL_HOME=/root/joe/model_online
  21. model_name=akaqjl8
  22. FM_HOME=/root/sunmingze/alphaFM
  23. ## 0 对比AUC 前置对比2日模型数据 与 线上模型数据效果对比,如果2日模型优于线上,更新线上模型
  24. #online_model=${MODEL_PATH}/model_online.txt
  25. #$HADOOP fs -text ${bucketDataPath}/${today}/* | /root/sunmingze/alphaFM/bin/fm_predict -m ${MODEL_PATH}/${online_model} -dim 0 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_online.txt
  26. #$HADOOP fs -text ${bucketDataPath}/${today}/* | /root/sunmingze/alphaFM/bin/fm_predict -m ${MODEL_PATH}/${model_name}_${today_early_3}.txt -dim 0 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_new.txt
  27. #
  28. ## 1 对比auc数据判断是否更新线上模型
  29. #online_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_online.txt | /root/sunmingze/AUC/AUC`
  30. #new_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_new.txt | /root/sunmingze/AUC/AUC`
  31. #if [ "$online_auc" \< "$new_auc" ]; then
  32. # echo "推荐新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  33. # /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  34. # # todo 模型格式转换
  35. #
  36. # # todo 模型文件上传OSS
  37. #
  38. # # todo 本地保存最新的线上使用的模型,用于下一次的AUC验证
  39. #else
  40. # echo "推荐新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  41. # /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  42. ## exit 1
  43. #fi
  44. #
  45. #
  46. ## 2 判断上游表是否生产完成,最长等待到12点
  47. ## shellcheck disable=SC2039
  48. #source /root/anaconda3/bin/activate py37
  49. ## shellcheck disable=SC2154
  50. #echo "$(date +%Y-%m-%d_%H-%M-%S)----------step1------------开始校验是否生产完数据,分区信息:beginStr:${begin_early_2_Str}${beginHhStr},endStr:${end_early_2_Str}${endHhStr}"
  51. #while true; do
  52. # python_return_code=$(python /root/joe/recommend-emr-dataprocess/qiaojialiang/checkHiveDataUtil.py --table ${table} --beginStr ${begin_early_2_Str}${beginHhStr} --endStr ${end_early_2_Str}${endHhStr})
  53. # echo "python 返回值:${python_return_code}"
  54. # if [ $python_return_code -eq 0 ]; then
  55. # echo "Python程序返回0,校验存在数据,退出循环。"
  56. # break
  57. # fi
  58. # echo "Python程序返回非0值,不存在数据,等待五分钟后再次调用。"
  59. # sleep 300
  60. # current_hour=$(date +%H)
  61. # current_minute=$(date +%M)
  62. # # shellcheck disable=SC2039
  63. # if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
  64. # echo "最长等待时间已到,失败:${current_hour}-${current_minute}"
  65. # exit 1
  66. # fi
  67. #done
  68. #
  69. ## 3 生产原始数据
  70. #echo "$(date +%Y-%m-%d_%H-%M-%S)----------step2------------开始根据${table}生产原始数据"
  71. #/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  72. #--class com.aliyun.odps.spark.examples.makedata_qiao.makedata_13_originData_20240705 \
  73. #--master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
  74. #../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  75. #tablePart:64 repartition:32 \
  76. #beginStr:${begin_early_2_Str}${beginHhStr} endStr:${end_early_2_Str}${endHhStr} \
  77. #savePath:${originDataPath} \
  78. #table:${table}
  79. #if [ $? -ne 0 ]; then
  80. # echo "Spark原始样本生产任务执行失败"
  81. # exit 1
  82. #else
  83. # echo "spark原始样本生产执行成功"
  84. #fi
  85. #
  86. #
  87. ## 4 特征值拼接
  88. #echo "$(date +%Y-%m-%d_%H-%M-%S)----------step3------------开始特征值拼接"
  89. #/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  90. #--class com.aliyun.odps.spark.examples.makedata_qiao.makedata_14_valueData_20240705 \
  91. #--master yarn --driver-memory 1G --executor-memory 3G --executor-cores 1 --num-executors 32 \
  92. #../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  93. #readPath:${originDataPath} \
  94. #savePath:${valueDataPath} \
  95. #beginStr:${begin_early_2_Str} endStr:${end_early_2_Str} repartition:1000
  96. #if [ $? -ne 0 ]; then
  97. # echo "Spark特征值拼接处理任务执行失败"
  98. # exit 1
  99. #else
  100. # echo "spark特征值拼接处理执行成功"
  101. #fi
  102. #
  103. ## 5 特征分桶
  104. #echo "$(date +%Y-%m-%d_%H-%M-%S)----------step4------------根据特征分桶生产重打分特征数据"
  105. #/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  106. #--class com.aliyun.odps.spark.examples.makedata_qiao.makedata_16_bucketData_20240705 \
  107. #--master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
  108. #../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  109. #readPath:${valueDataPath} \
  110. #savePath:${bucketDataPath} \
  111. #beginStr:${begin_early_2_Str} endStr:${end_early_2_Str} repartition:1000
  112. #if [ $? -ne 0 ]; then
  113. # echo "Spark特征分桶处理任务执行失败"
  114. # exit 1
  115. #else
  116. # echo "spark特征分桶处理执行成功"
  117. #fi
  118. #
  119. ## 6 模型训练
  120. #$HADOOP fs -text ${bucketDataPath}/${begin_early_2_Str}/* | ${FM_HOME}/fm_train -m ${MODEL_PATH}/${model_name}_${begin_early_2_Str}.txt -dim 1,1,8 -im ${LAST_MODEL_HOME}/model_online.txt -core 8
  121. #if [ $? -ne 0 ]; then
  122. # echo "模型训练失败"
  123. # /root/anaconda3/bin/python ad/ad_monitor_util.py "推荐模型训练失败"
  124. # exit 1
  125. #fi
  126. echo ${bucketDataPath}/20240703/*
  127. echo ${FM_HOME}/fm_train
  128. echo ${MODEL_PATH}/${model_name}_20240703.txt
  129. echo ${LAST_MODEL_HOME}/model_online.txt
  130. #$HADOOP fs -text ${bucketDataPath}/20240703/* | ${FM_HOME}/fm_train -m ${MODEL_PATH}/${model_name}_20240703.txt -dim 1,1,8 -im ${LAST_MODEL_HOME}/model_online.txt -core 8
  131. #if [ $? -ne 0 ]; then
  132. # echo "模型训练失败"
  133. # /root/anaconda3/bin/python ad/ad_monitor_util.py "推荐模型训练失败"
  134. # exit 1
  135. #fi