123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145 |
- #!/bin/sh
- set -ex
- # nohup sh handle_rov.sh > "$(date +%Y%m%d_%H%M%S)_handle_rov.log" 2>&1 &
- # 原始数据table name
- table='alg_recsys_sample_all'
- today="$(date +%Y%m%d)"
- today_early_3="$(date -d '3 days ago' +%Y%m%d)"
- #table='alg_recsys_sample_all_test'
- # 处理分区配置 推荐数据间隔一天生产,所以5日0点使用3日0-23点数据生产new模型数据
- begin_early_2_Str="$(date -d '2 days ago' +%Y%m%d)"
- end_early_2_Str="$(date -d '2 days ago' +%Y%m%d)"
- beginHhStr=00
- endHhStr=23
- # 各节点产出hdfs文件绝对路径
- originDataPath=/dw/recommend/model/13_sample_data/
- valueDataPath=/dw/recommend/model/14_feature_data/
- bucketDataPath=/dw/recommend/model/16_train_data/
- MODEL_PATH=/root/joe/recommend-emr-dataprocess/rov/model
- PREDICT_PATH=/root/zhaohp/recommend-emr-dataprocess/predict
- LAST_MODEL_HOME=/root/joe/model_online
- model_name=akaqjl8
- FM_HOME=/root/sunmingze/alphaFM
- ## 0 对比AUC 前置对比2日模型数据 与 线上模型数据效果对比,如果2日模型优于线上,更新线上模型
- #online_model=${MODEL_PATH}/model_online.txt
- #$HADOOP fs -text ${bucketDataPath}/${today}/* | /root/sunmingze/alphaFM/bin/fm_predict -m ${MODEL_PATH}/${online_model} -dim 0 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_online.txt
- #$HADOOP fs -text ${bucketDataPath}/${today}/* | /root/sunmingze/alphaFM/bin/fm_predict -m ${MODEL_PATH}/${model_name}_${today_early_3}.txt -dim 0 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_new.txt
- #
- ## 1 对比auc数据判断是否更新线上模型
- #online_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_online.txt | /root/sunmingze/AUC/AUC`
- #new_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_new.txt | /root/sunmingze/AUC/AUC`
- #if [ "$online_auc" \< "$new_auc" ]; then
- # echo "推荐新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
- # /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
- # # todo 模型格式转换
- #
- # # todo 模型文件上传OSS
- #
- # # todo 本地保存最新的线上使用的模型,用于下一次的AUC验证
- #else
- # echo "推荐新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
- # /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
- ## exit 1
- #fi
- #
- #
- ## 2 判断上游表是否生产完成,最长等待到12点
- ## shellcheck disable=SC2039
- #source /root/anaconda3/bin/activate py37
- ## shellcheck disable=SC2154
- #echo "$(date +%Y-%m-%d_%H-%M-%S)----------step1------------开始校验是否生产完数据,分区信息:beginStr:${begin_early_2_Str}${beginHhStr},endStr:${end_early_2_Str}${endHhStr}"
- #while true; do
- # python_return_code=$(python /root/joe/recommend-emr-dataprocess/qiaojialiang/checkHiveDataUtil.py --table ${table} --beginStr ${begin_early_2_Str}${beginHhStr} --endStr ${end_early_2_Str}${endHhStr})
- # echo "python 返回值:${python_return_code}"
- # if [ $python_return_code -eq 0 ]; then
- # echo "Python程序返回0,校验存在数据,退出循环。"
- # break
- # fi
- # echo "Python程序返回非0值,不存在数据,等待五分钟后再次调用。"
- # sleep 300
- # current_hour=$(date +%H)
- # current_minute=$(date +%M)
- # # shellcheck disable=SC2039
- # if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
- # echo "最长等待时间已到,失败:${current_hour}-${current_minute}"
- # exit 1
- # fi
- #done
- #
- ## 3 生产原始数据
- #echo "$(date +%Y-%m-%d_%H-%M-%S)----------step2------------开始根据${table}生产原始数据"
- #/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
- #--class com.aliyun.odps.spark.examples.makedata_qiao.makedata_13_originData_20240705 \
- #--master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
- #../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
- #tablePart:64 repartition:32 \
- #beginStr:${begin_early_2_Str}${beginHhStr} endStr:${end_early_2_Str}${endHhStr} \
- #savePath:${originDataPath} \
- #table:${table}
- #if [ $? -ne 0 ]; then
- # echo "Spark原始样本生产任务执行失败"
- # exit 1
- #else
- # echo "spark原始样本生产执行成功"
- #fi
- #
- #
- ## 4 特征值拼接
- #echo "$(date +%Y-%m-%d_%H-%M-%S)----------step3------------开始特征值拼接"
- #/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
- #--class com.aliyun.odps.spark.examples.makedata_qiao.makedata_14_valueData_20240705 \
- #--master yarn --driver-memory 1G --executor-memory 3G --executor-cores 1 --num-executors 32 \
- #../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
- #readPath:${originDataPath} \
- #savePath:${valueDataPath} \
- #beginStr:${begin_early_2_Str} endStr:${end_early_2_Str} repartition:1000
- #if [ $? -ne 0 ]; then
- # echo "Spark特征值拼接处理任务执行失败"
- # exit 1
- #else
- # echo "spark特征值拼接处理执行成功"
- #fi
- #
- ## 5 特征分桶
- #echo "$(date +%Y-%m-%d_%H-%M-%S)----------step4------------根据特征分桶生产重打分特征数据"
- #/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
- #--class com.aliyun.odps.spark.examples.makedata_qiao.makedata_16_bucketData_20240705 \
- #--master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
- #../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
- #readPath:${valueDataPath} \
- #savePath:${bucketDataPath} \
- #beginStr:${begin_early_2_Str} endStr:${end_early_2_Str} repartition:1000
- #if [ $? -ne 0 ]; then
- # echo "Spark特征分桶处理任务执行失败"
- # exit 1
- #else
- # echo "spark特征分桶处理执行成功"
- #fi
- #
- ## 6 模型训练
- #$HADOOP fs -text ${bucketDataPath}/${begin_early_2_Str}/* | ${FM_HOME}/fm_train -m ${MODEL_PATH}/${model_name}_${begin_early_2_Str}.txt -dim 1,1,8 -im ${LAST_MODEL_HOME}/model_online.txt -core 8
- #if [ $? -ne 0 ]; then
- # echo "模型训练失败"
- # /root/anaconda3/bin/python ad/ad_monitor_util.py "推荐模型训练失败"
- # exit 1
- #fi
- echo ${bucketDataPath}/20240703/*
- echo ${FM_HOME}/fm_train
- echo ${MODEL_PATH}/${model_name}_20240703.txt
- echo ${LAST_MODEL_HOME}/model_online.txt
- #$HADOOP fs -text ${bucketDataPath}/20240703/* | ${FM_HOME}/fm_train -m ${MODEL_PATH}/${model_name}_20240703.txt -dim 1,1,8 -im ${LAST_MODEL_HOME}/model_online.txt -core 8
- #if [ $? -ne 0 ]; then
- # echo "模型训练失败"
- # /root/anaconda3/bin/python ad/ad_monitor_util.py "推荐模型训练失败"
- # exit 1
- #fi
|