01_ad_model_update_everyday.sh 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134
  1. #!/bin/sh
  2. set -x
  3. # 0 全局变量/参数
  4. originDataSavePath=/dw/recommend/model/31_ad_sample_data_auto/
  5. bucketFeatureSavePath=/dw/recommend/model/33_ad_train_data_nosparse_auto/
  6. model_name=model_lr0
  7. today="$(date +%Y%m%d)"
  8. today_early_1="$(date -d '1 days ago' +%Y%m%d)"
  9. MODEL_PATH=/root/zhaohp/recommend-emr-dataprocess/model
  10. PREDICT_PATH=/root/zhaohp/recommend-emr-dataprocess/predict
  11. HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
  12. FM_HOME=/root/sunmingze/alphaFM
  13. OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/ad_model/
  14. max_hour=16
  15. max_minute=00
  16. # 1 判断依赖的数据表是否生产完成
  17. source /root/anaconda3/bin/activate py37
  18. while true; do
  19. python_return_code=$(python ad/ad_utils.py --excute_program check_ad_origin_hive --partition ${today} --hh 10)
  20. if [ $python_return_code -eq 0 ]; then
  21. echo "Python程序返回0,退出循环。"
  22. break
  23. fi
  24. echo "Python程序返回非0值,等待五分钟后再次调用。"
  25. sleep 300
  26. current_hour=$(date +%H)
  27. current_minute=$(date +%M)
  28. if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
  29. echo "最长等待时间已到,失败:${current_hour}-${current_minute}"
  30. msg="广告特征数据校验失败,大数据分区没有数据: ${today}10"
  31. /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg}
  32. exit 1
  33. fi
  34. done
  35. # 2 原始特征生成
  36. /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  37. --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_31_originData_20240620 \
  38. --master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
  39. ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  40. tablePart:64 repartition:32 \
  41. beginStr:${today_early_1}08 endStr:${today}10 \
  42. savePath:${originDataSavePath} \
  43. table:alg_recsys_ad_sample_all_new
  44. if [ $? -ne 0 ]; then
  45. echo "Spark原始样本生产任务执行失败"
  46. msg="广告特征数据生成失败,Spark原始样本生产任务执行失败"
  47. /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg}
  48. exit 1
  49. else
  50. echo "spark原始样本生产执行成功"
  51. fi
  52. # 3 特征分桶
  53. /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  54. --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_33_bucketData_20240622 \
  55. --master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
  56. ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  57. beginStr:${today_early_1} endStr:${today} repartition:400 \
  58. filterNames:XXXXX \
  59. bucketFileName:20240620_ad_bucket_249_fix.txt \
  60. readPath:${originDataSavePath} \
  61. savePath:${bucketFeatureSavePath}
  62. if [ $? -ne 0 ]; then
  63. echo "Spark特征分桶处理任务执行失败"
  64. msg="广告特征分桶失败,Spark特征分桶处理任务执行失败"
  65. /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg}
  66. exit 1
  67. else
  68. echo "spark特征分桶处理执行成功"
  69. fi
  70. # 4 模型训练
  71. $HADOOP fs -text ${bucketFeatureSavePath}/${today_early_1}/* | ${FM_HOME}/fm_train -m ${MODEL_PATH}/${model_name}_${today_early_1}.txt -dim 1,1,0 -core 8
  72. if [ $? -ne 0 ]; then
  73. echo "模型训练失败"
  74. /root/anaconda3/bin/python ad/ad_monitor_util.py "广告模型训练失败"
  75. exit 1
  76. fi
  77. # 5 对比AUC
  78. # 5.1 校验今天10分区的数据是否生产完成
  79. online_model=${MODEL_PATH}/model_online.txt
  80. $HADOOP fs -text ${bucketFeatureSavePath}/${today}/* | /root/sunmingze/alphaFM/bin/fm_predict -m ${MODEL_PATH}/${online_model} -dim 0 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_online.txt
  81. $HADOOP fs -text ${bucketFeatureSavePath}/${today}/* | /root/sunmingze/alphaFM/bin/fm_predict -m ${MODEL_PATH}/${model_name}_${today_early_1}.txt -dim 0 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_new.txt
  82. # shellcheck disable=SC2006
  83. online_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_online.txt | /root/sunmingze/AUC/AUC`
  84. new_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_new.txt | /root/sunmingze/AUC/AUC`
  85. if [ "$online_auc" \< "$new_auc" ]; then
  86. echo "新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  87. /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  88. else
  89. echo "新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  90. /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  91. exit 1
  92. fi
  93. # 6 模型格式转换
  94. cat ${MODEL_PATH}/${model_name}_${today_early_1}.txt \
  95. | sed '1d' | awk -F " " '{if($2!="0") print $1"\t"$2}' \
  96. > ${MODEL_PATH}/${model_name}_${today_early_1}_change.txt
  97. # 7 模型文件上传OSS
  98. online_model_path=${OSS_PATH}/${model_name}.txt
  99. $HADOOP fs -test -e ${online_model_path}
  100. if [ $? -eq 0 ]; then
  101. echo "数据存在, 先删除。"
  102. $HADOOP fs -rm -r ${online_model_path}
  103. else
  104. echo "数据不存在"
  105. fi
  106. $HADOOP fs -put ${MODEL_PATH}/${model_name}_${today_early_1}_change.txt ${online_model_path}
  107. if [ $? -eq 0 ]; then
  108. echo "推荐模型文件至OSS成功"
  109. else
  110. echo "推荐模型文件至OSS失败"
  111. /root/anaconda3/bin/python ad/ad_monitor_util.py "推荐模型文件至OSS失败"
  112. exit 1
  113. fi
  114. # 7.3 本地保存最新的线上使用的模型,用于下一次的AUC验证
  115. cp ${MODEL_PATH}/${model_name}_${today_early_1}.txt ${MODEL_PATH}/model_online.txt